• Title/Summary/Keyword: 가우시안 혼합 모형

Search Result 17, Processing Time 0.022 seconds

Nonparametric clustering of functional time series electricity consumption data (전기 사용량 시계열 함수 데이터에 대한 비모수적 군집화)

  • Kim, Jaehee
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.1
    • /
    • pp.149-160
    • /
    • 2019
  • The electricity consumption time series data of 'A' University from July 2016 to June 2017 is analyzed via nonparametric functional data clustering since the time series data can be regarded as realization of continuous functions with dependency structure. We use a Bouveyron and Jacques (Advances in Data Analysis and Classification, 5, 4, 281-300, 2011) method based on model-based functional clustering with an FEM algorithm that assumes a Gaussian distribution on functional principal components. Clusterwise analysis is provided with cluster mean functions, densities and cluster profiles.

Identification of shear layer at river confluence using (RGB) aerial imagery (RGB 항공 영상을 이용한 하천 합류부 전단층 추출법)

  • Noh, Hyoseob;Park, Yong Sung
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.553-566
    • /
    • 2021
  • River confluence is often characterized by shear layer and the associated strong mixing. In natural rivers, the main channel and its tributary can be separated by the shear layer using contrasting colors. The shear layer can be easily observed using aerial images from satellite or unmanned aerial vehicles. This study proposes a low-cost identification method extracting geographic features of the shear layer using RGB aerial image. The method consists of three stages. At first, in order to identify the shear layer, it performs image segmentation using a Gaussian mixture model and extracts the water bodies of the main channel and tributary. Next, the self-organizing map simplifies the flow line of the water bodies into the 1-dimensional curve grid. After that, the curvilinear coordinate transformation is performed using the water body pixels and the curve grid. As a result, the shear layer identification method was successfully applied to the confluence between Nakdong River and Nam River to extract geometric shear layer features (confluence angle, upstream- and downstream- channel widths, shear layer length, maximum shear layer thickness).

An Intelligent Iris Recognition System (지능형 홍채 인식 시스템)

  • Kim, Jae-Min;Cho, Seong-Won;Kim, Soo-Lin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.468-472
    • /
    • 2004
  • This paper presents an intelligent iris recognition system which consists of quality check, iris localization, feature extraction, and verification. For the quality check, the local statistics on the pupil boundary is used. Gaussian mixture model is used to segment and localized the iris region. The feature extraction method is based on an optimal waveform simplification. For the verification, we use an intelligent variable threshold.

The ex-Gaussian analysis of reaction time distributions for cognitive experiments (ex-Gaussian 모형을 활용한 인지적 과제의 반응시간 분포 분석)

  • Park, Hyung-Bum;Hyun, Joo-Seok
    • Science of Emotion and Sensibility
    • /
    • v.17 no.2
    • /
    • pp.63-76
    • /
    • 2014
  • Although most behavioral reaction times (RTs) for cognitive tasks exhibit positively skewed distributions, the majority of studies primarily rely on a measure of central tendency (e.g. mean) which can cause misinterpretations of data's underlying property. The purpose of current study is to introduce procedures for describing characteristics of RT distributions, thereby effectively examine the influence of experimental manipulations. On the basis of assumption that RT distribution can be represented as a convolution of Gaussian and exponential variables, we fitted the ex-Gaussian function under a maximum-likelihood method. The ex-Gaussian function provides quantitative parameters of distributional properties and the probability density functions. Here we exemplified distributional analysis by using empirical RT data from two conventional visual search tasks, and attempted theoretical interpretation for setsize effect leading proportional mean RT delays. We believe that distributional RT analysis with a mathematical function beyond the central tendency estimates could provide insights into various theoretical and individual difference studies.

Automatic Extraction of UV patterns for Paper Money Inspection (지폐검사를 위한 UV 패턴의 자동추출)

  • Lee, Geon-Ho;Park, Tae-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.3
    • /
    • pp.365-371
    • /
    • 2011
  • Most recently issued paper money includes security patterns that can be only identified by ultra violet (UV) illuminations. We propose an automatic extraction method of UV patterns for paper money inspection systems. The image acquired by camera and UV illumination is transformed to input data through preprocessing. And then, the Gaussian mixture model (GMM) and split-and-merge expectation maximization (SMEM) algorithm are applied to segment the image represented by input data. In order to extract the UV pattern from the segmented image, we develop a criterion using the area of covariance vector and the weight value. The experimental results on various paper money are presented to verify the usefulness of the proposed method.

Analysis Method for Full-length LiDAR Waveforms (라이다 파장 분석 방법론에 대한 연구)

  • Jung, Myung-Hee;Yun, Eui-Jung;Kim, Cheon-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.44 no.4 s.316
    • /
    • pp.28-35
    • /
    • 2007
  • Airbone laser altimeters have been utilized for 3D topographic mapping of the earth, moon, and planets with high resolution and accuracy, which is a rapidly growing remote sensing technique that measures the round-trip time emitted laser pulse to determine the topography. The traveling time from the laser scanner to the Earth's surface and back is directly related to the distance of the sensor to the ground. When there are several objects within the travel path of the laser pulse, the reflected laser pluses are distorted by surface variation within the footprint, generating multiple echoes because each target transforms the emitted pulse. The shapes of the received waveforms also contain important information about surface roughness, slope and reflectivity. Waveform processing algorithms parameterize and model the return signal resulting from the interaction of the transmitted laser pulse with the surface. Each of the multiple targets within the footprint can be identified. Assuming each response is gaussian, returns are modeled as a mixture gaussian distribution. Then, the parameters of the model are estimated by LMS Method or EM algorithm However, each response actually shows the skewness in the right side with the slowly decaying tail. For the application to require more accurate analysis, the tail information is to be quantified by an approach to decompose the tail. One method to handle with this problem is proposed in this study.

Clustering of sediment characteristics in South Korean rivers and its expanded application strategy to H-ADCP based suspended sediment concentration monitoring technique (한국 하천의 지역별 유사특성의 군집화와 H-ADCP 기반 부유사 농도 관측 기법에의 활용 방안)

  • Noh, Hyoseob;Son, GeunSoo;Kim, Dongsu;Park, Yong Sung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.43-57
    • /
    • 2022
  • Advances in measurement techniques have reduced measurement costs and enhanced safety resulting in less uncertainty. For example, an acoustic doppler current profiler (ADCP) based suspended sediment concentration (SSC) measurement technique is being accepted as an alternative to the conventional data collection method. In Korean rivers, horizontal ADCPs (H-ADCPs) are mounted on the automatic discharge monitoring stations, where SSC can be measured using the backscatter of ADCPs. However, automatic discharge monitoring stations and sediment monitoring stations do not always coincide which hinders the application of the new techniques that are not feasible to some stations. This work presents and analyzes H-ADCP-SSC models for 9 discharge monitoring stations in Korean rivers. In application of the Gaussian mixture model (GMM) to sediment-related variables (catchment area, particle size distributions of suspended sediment and bed material, water discharge-sediment discharge curves) from 44 sediment monitoring stations, it is revealed that those characteristics can distinguish sediment monitoring stations regionally. Linking the two results, we propose a protocol determining the H-ADCP-SSC model where no H-ADCP-SSC model is available.