• Title/Summary/Keyword: 가시설 구조물

Search Result 36, Processing Time 0.023 seconds

Evaluation of the Lateral Influence Range on Temporary Structures for a Train Operating at 80km/h (시속 80km/h의 열차 운행시 가시설 구조물에 미치는 수평영향범위 평가)

  • Jong-Chul Kim;Yeong-Bae Kim;Tae-Hyun Hwang;Kang-Il Lee
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.2
    • /
    • pp.35-45
    • /
    • 2023
  • In accordance with the urban development project, cases of constructing temporary wall structures for ground excavation in the vicinity of railway structures are increasing. In addition, the complaints about train vibration are also increasing from people living in large buildings newly built after installing the temporary wall structures. In order to solve this problem, a method for reducing train vibration is considered from the design stage of the building, and a vibration reduction system is installed on the structure when the building is newly constructed. However, the vibration reduction method established at the structure design stage can be determined through the results of field measurements or dynamic numerical analysis for a specific area, and there is a limit to evaluating whether the established vibration reduction method is appropriate due to the lack of objective research data. Therefore, in order to provide objective basic data when establishing a vibration reduction method, this study performed the dynamic numerical analysis for a operating train with a speed 80km/h by applying differently the depths of railway structures, the distances between railways and temporary wall structures, and ground conditions. It was found that the range of influence of a train operating at 80 km/h was within 4.5D of the lateral distance from the railway structure in the case of the condition where the temporary wall was installed.

Nonlinear Dynamic Behavior of Temporary Rail Considering the Effect of Vibration (진동영향을 고려한 가시설 레일의 동적 거동 특성)

  • Lim, Hyung Joon;Ryu, Dong Hyeon;Won, Jong Hwa;Kim, Moon Kyum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2A
    • /
    • pp.171-178
    • /
    • 2008
  • The object of this study is to propose a rate of vibration increase in the analysis of temporary rail non-fixed in the vertical direction and characterize the nonlinear dynamic behavior of temporary rail while considering longitudinal and latitudinal load, vibration and lifting. The rate of vibration increase is proposed through measurement of an actual structure that is largely affected by loading and vibration of the superstructure. Dynamic behavior was additionally characterized by the dynamic response resulting from nonlinear dynamic finite element analysis with vehicle loading, including the rate of vibration increase. As a result, the rate of vibration increase by the vibration of an Auto Bar Machine is determined as 7% and the maximum stress in the analysis of the nonlinear rail is increased 14.5% over that of linear rail, and temporary rail is shown to be very sensitive to the velocity of the superstructure.

A Study on Securing safety through Behavior Analysis of Earth Retaining Wall (흙막이 가시설의 거동 분석을 통한 안정성 확보 방안에 관한 연구)

  • Kim, Kwang-Leyol;Kim, You-Seong;Kim, Seong-Soo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.11-19
    • /
    • 2013
  • Recently despite the development of analysis program and construction technologies, collapse at the many earth retaining wall construction site of the structure due to the economic and human damage has occurred. The results of geothechnical investigation studies field, it was found to differ from the results of the original design. There may be errors parameters calculated from the results of ground investigation in such a case. And it can be estimated that it is irrational to behavior analysis of the earth retaining wall were analyzed by utilizing the parameters. And in this study, parameters that affect the earth retaining wall the correlations were analyzed using elasto-plastic method. Analysis method was changed various parameters (cohesion, subgrade reaction coefficient, load condition) applied to the elasto-plastic method. And due to a change in the behavior of earth retaining wall materials were analyzed. As a result, the cohesion greatly affects the behavior of earth retaining wall materials in various parameters. For this reason, the results of the geothechnical investigation, confirmation of the actual ground is very important in the design of the earth retaining wall. And, calculating accurate and reasonable of the cohesion of the various parameters is very important.

An Numerical Analysis of the Preloading Effect of IPS Retaining Wall through Earth Horizontal Displacement Measuring (IPS 흙막이 가시설의 수평 변위 계측을 통한 선행하중 효과 수치해석적 분석)

  • Lee, Chiho;Lee, Jonghwi;Lee, Changki;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.5
    • /
    • pp.25-33
    • /
    • 2012
  • In this study, gathered measuring data at fields constructed by IPS(Innovative Prestressed Support) system controls the ground displacement and improves the constructability of earth work and structure work greatly, and compared with horizontal displacement calculated by Elasto-plastic analysis program(EXCAV/W). As the result, displacement of calculated by pre-loading data is reduced 13.2% average of general method, and measuring displacement is also reduced 26.7% average of general method. Therefore that IPS system is more safe than conventional strut method in contrast to displacement of underground wall. In addition, horizontal displacement is reduced through the pre-loading effect used by IPS system.

Evaluation of Corrosion Thickness Loss of Temporary Steel Members Exposed to A Subway Construction Site (지하철 공사현장 환경하의 가시설 강재의 부식두께감소량 추정)

  • Kim, In Tae;Jeon, Sang Hyuck;Hur, Jung Ok;Cheung, Jin Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.301-310
    • /
    • 2009
  • Steel has been widely used as a material in temporary structures. Corrosion attack often reduces the long-term durability of temporary steel members that are not protected from corrosion. In designing temporary steel structures, it is difficult to evaluate their long-term durability, since the thickness loss of steel members is not clear. In this study, laboratory and field exposure corrosion tests were performed on structural steel plate specimens, and the loss of thickness of specimens that were exposed to a subway construction site for 11 months and of specimens that were exposed to environments with controlled humidity and calcium chloride for six months were measured. Finally, a thickness loss equation was formulated based on the environmental conditions and the testing periods.

An Experimental Study on Compressive Loading Capacity of PCT System (PCT System의 압축내하력에 관한 실험적 연구)

  • Han, Man-Yup;Kim, Jae-Hong;Kang, Sang-Hun;Jin, Kyung-Seok;Jeon, Yong-Sik;Cho, Byung-Ku
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.41-44
    • /
    • 2008
  • The PCT that supports the walls of long span temporary shoring facility is previously manufactured in the way of prestressing, and it which is composed of concrete is improved precast structure to satisfy enough stiffness. The components of PCT are manufactured as a fixed form, and they are close to the inner side of the wall of temporary shoring facility by fixed means in PCT. PCT system as support structure is that the ends of concrete filled segment members are united by the means of connection and also they have connection hole. In this study, PCT has enough bearing power for the long span temporary shoring facility, and also make the term of work reduce due to that the time of curing reduce through the method of precast.

  • PDF

Design Optimization of Earth Retaining Walls Using the Taguchi Method (다구찌 기법을 활용한 흙막이 가설공법 최적설계 방안)

  • Moon, Sungwoo;Kim, Sungbu
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • Temporary structures provide the accessible working area when building a permanent building structure in the construction operation. Executed in a natural environment, the temporary structure is prone to the external influence factors of underground water, soil conditions, etc. These factors should be carefully considered in designing the temporary structure. The objective of this study is to apply the external influence factors in designing a more reliable earth retaining wall. The research methodology is based on the Taguchi method that has been studied to improve product quality in the industry. An orthogonal array was developed to analyze the interaction between the external influence factors and the internal influence factors. A sample case study demonstrated that the Taguchi method can be used in planning a more reliable temporary structure for earth retaining walls.

Development of Infrastructure automatic alert populating system in Geotechincal Monitoring field (지반 분야에서의 시설물 안전위험 자동화 상황전파 시스템 개발)

  • Jung, Jea-Hyen;Kim, Yong-Su;Han, Sang-Jea
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.933-939
    • /
    • 2010
  • Gathering information and systemization of infrastructure disaster management is to reduce uncertainties in making decisions and maximize the number of alternations for reasonable decision making. The key object is the progress report & propagation automation system based on sensors, which is major for providing objective data to realize and support decision makings and delivering decision to a certain area, department, manager and other people rapidly. Collecting, reviewing and database of existing progress report & propagation manual in order to achieve networking of safety management on major social infrastructure of the nation, materialization of field-oriented intelligent business process by developing mobile safety management command transmission device and integrating it into facility safety management network.

  • PDF

A Study on the Strength Enhancement of Wale in Temporary Retaining Structures (흙막이 지하 가시설 구조체의 띠장 휨 강성 증대를 위한 연구)

  • Lim, Dong Hwan;Lee, Yong Jun;Ahn, Sang Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3C
    • /
    • pp.91-96
    • /
    • 2009
  • The purpose of this study was to investigate a method for the strength enhancement of wale in temporary retaining structures. Tests on the wale structures strengthened with carbon fibre reinforced plastic (CFRP) strips and prestressed with seven wire strands were conducted. From this test, it is found that the flexural stiffness and strength of the wales strengthened with CFRP strips and seven wire strands were significantly improved compared to the unstrengthened one. The ultimate tensile strains of attached CFRP strips on the steel beam were in the range of 8,000 and $11,000{\mu}{\epsilon}$, and it is noticed that the bonding ability with steel and CFRP strips is good. In this paper, a new method for enhancing the strength of wale in retaining structures is suggested.