• Title/Summary/Keyword: 가스터빈 캐스케이드

Search Result 9, Processing Time 0.022 seconds

Effect of Groove Shape of Blade Tip on Tip Surface Heat Transfer Coefficient Distributions of a Turbine Cascade (블레이드 팁의 Groove 형상이 터빈 캐스케이드 팁 열전달 계수분포에 미치는 영향에 대한 실험적 연구)

  • Nho, Young-Cheol;Jo, Yong-Hwa;Lee, Yong-Jin;Kim, Hark-Bong;Kwak, Jae-Su
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.60-68
    • /
    • 2010
  • In this study, the conventional plane tip, double squealer tip, and various groove tip blades were tested in a linear cascade in order to measure the effect of the tip shapes on tip surface heat transfer coefficient distributions. Detailed heat transfer coefficient distributions were measured using a hue-detection based transient liquid crystals technique. Two tip gap clearances of 1.5% and 2.3% of blade span were investigated and the Reynolds number based on cascade exit velocity and chord length was $2.48{\times}10^5$. Results showed that the overall heat transfer coefficients on the tip surface with various grooved tips were lower than those with plane tip blade. The overall heat transfer coefficient on grooved along suction side tip was lower than that on the squealer tip.

Effect of Groove Shape of Blade Tip on Tip Surface Heat Transfer Coefficient Distributions of a Turbine Cascade (블레이드 팁의 Groove 형상이 터빈 캐스케이드 팁 열전달 계수분포에 미치는 영향에 대한 실험적 연구)

  • Nho, Young-Cheol;Jo, Yong-Hwa;Lee, Youn-Jin;Kim, Hark-Bong;Kwak, Jae-Su
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.311-318
    • /
    • 2010
  • In this study, the conventional plane tip, double squealer tip, and various groove tip blades were tested in a linear cascade in order to measure the effect of the tip shapes on tip surface heat transfer coefficient distributions. Detailed heat transfer coefficient distributions were measured using a hue-detection based transient liquid crystals technique. Two tip gap clearances of 1.5% and 2.3% of blade span were investigated and the Reynolds number based on cascade exit velocity and chord length was $2.48{\times}10^5$. Results showed that the overall heat transfer coefficients on the tip surface with various grooved tips were lower than those with plane tip blade. The overall heat transfer coefficient on grooved along suction side tip was lower than that on the squealer tip.

  • PDF

Numerical Analysis on Effects of Free-Stream Turbulence Intensity on the Three-dimensional Turbulent Flow Characteristics in a Turbine Cascade (자유유동 난류강도가 터빈 캐스케이드내 3차원 난류유동 특성에 미치는 영향에 관한 전산해석)

  • Yoon, Deok-Kyu;Lee, Wu-Sang;Kim, Dae-Hyun;Chung, Jin-Taek
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.371-374
    • /
    • 2006
  • The objective of this study is to determine the influence of free-stream turbulent intensity on the three-dimensional turbulent flow in a linear turbine cascade. The range of free-stream turbulence intensity considered is 0.7~10%. This study was performed numerically. The results show that the mass averaged loss coefficient increased according to the increase of free-stream turbulence intensity due to increased value of the mass averaged total pressure loss coefficient which was higher than the decreased value of the mass averaged secondary flow loss coefficient. The loss coefficient distribution was changed suddenly at a free-stream turbulence intensity of 10% while the loss coefficient distribution was rarely changed at a lower free-stream turbulence intensity of 5%.

  • PDF

Numerical Analysis on Heat Transfer Characteristics of the Contoured Endwall in a Turbine Cascade (끝벽의 형상이 터빈 캐스케이드 내 열전달 특성에 미치는 영향에 관한 전산해석)

  • Lee, Wu-Sang;Yoon, Deok-Kyu;Kwang, Hyun-Ju;Chung, Jin-Taek
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.535-538
    • /
    • 2006
  • The Objective of this study is to document the three-dimensional flow in a turbine cascade with Contoured endwall in terms of Stanton number distribution to proposes an appropriate contraction ratio of endwall contouring which show the best performance. This study was numerically performed. The results show that heat transfer coefficient on the contoured endwall which has the height of 15% of the axial chord showed best performance. The numerical method and results in this study can be applied to the design of gas turbine cascade with high performance.

  • PDF

Numerical Analysis on Effects of the Contoured Endwall on the Three-dimensional Flow Characteristics in a Turbine (끝벽의 형상이 터빈 캐스케이드내 3차원 유동특성에 미치는 영향에 관한 전산해석)

  • Kim, Dae-yu;Chung, Tin-Taek
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.284-289
    • /
    • 2002
  • The objective of this study is to document the secondary flow and the total pressure loss distribution in the contoured endwall installed linear turbine cascade passage and to propose an appropriate height of the contoured endwall which shows the best loss reduction among the simulated contoured endwall. In this study, three different contoured endwalls have been tested which have different height. This study was performed by numerical method and the result showed the contoured endwall which has the height of $5\%$ of the axial chord showed the best loss reduction rate.

  • PDF

Numerical Analysis on Effects of the Boundary Layer Fence on the Three-dimensional Turbulent Flow in a Turbine Cascade (경계층내 장애물이 터빈 캐스케이드내 3차원 난류유동에 미치는 영향에 관한 전산해석)

  • Lee, Sangil;Chung, J. T.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.287-292
    • /
    • 2001
  • The objective of this study is to verify the secondary flow and the total pressure loss distribution in the boundary layer fence installed linear turbine cascade passage and to propose an appropriate height of the boundary layer fence which shows the best loss reduction among the simulated fences. In this study three different boundary layer fence was installed which have different height. This study was performed by numerical method and the result showed the boundary layer fence which has the height of one third of the inlet boundary layer thickness showed the best loss reduction rate.

  • PDF

Experimental Study on Effect of the Contoured Endwall on the Three-Dimensional Flow in a Turbine Nozzle Guide Vane Cascade (끝벽의 형상이 터빈 노즐안내깃 캐스케이드내 3차원 유동에 미치는 영향에 관한 연구)

  • Yun, Won-Nam;Chung, Jin-Taek
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.514-519
    • /
    • 2003
  • The objective of this study is to document the secondary flow and the total pressure loss distribution in the contoured endwall installed linear turbine nozzle guide vane cascade passage and to propose an appropriate contraction ratio of the contoured endwall which shows the best loss reduction among the simulated cases. In this study, three different contraction ratio of contoured endwalls have been tested. This study was performed by experimental method and when the contoured endwall has the contraction ratio of 0.17 on exit height the results showed the best loss reduction.

  • PDF

Experimental Study on Effects of the Contoured Endwall on the Three-Dimensional Flow in a Turbine Nozzle Guide Vane Cascade (곡면 끝벽을 갖는 터빈 노즐 안내깃 캐스케이드내 3차원 유동장에 관한 실험적 연구)

  • Yun, Won-Nam;Chung, Jin-Taek
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1975-1980
    • /
    • 2004
  • The three-dimensional flow in a turbine nozzle guide vane passage causes large secondary loss through the passage and increased heat transfer on the blade surface. In order to reduce or control these secondary flows, a linear cascade with a contoured endwall configuration was used and changes in the three-dimensional flow field were analyzed and discussed. Measurements of secondary flow velocity and total pressure loss within the passage have been performed by means of five-hole probes. The investigation was carried out at fixed exit Reynolds number of $4.0{\times}10^5$. The objective of this study is to document the development of the three-dimensional flow in a turbine nozzle guide vane cascade with modified endwall. The results show that the development of passage vortex and cross flow in the cascade composed of one flat and one contoured endwalls are affected by the flow acceleration which occurs in contoured endwall side. The overall loss is reduced near the flat endwall rather than contoured endwall.

  • PDF

Axial Turbine Aerodynamic Design of Small Heavy-Duty Gas Turbines (발전용 소형가스터빈의 축류터빈 공력설계)

  • Kim, Joung Seok;Lee, Wu Sang;Ryu, Je Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.415-421
    • /
    • 2013
  • This study describes the aerodynamic design procedure for the axial turbines of a small heavy-duty gas turbine engine being developed by Doosan Heavy Industries. The design procedure mainly consists of three parts: namely, flowpath design, airfoil design, and 3D performance calculation. To design the optimized flowpath, through-flow calculations as well as the loss estimation are widely used to evaluate the effect of geometric variables, for example, shape of meridional plane, mean radius, blades axial gap, and hade angle. During the airfoil design procedure, the optimum number of blades is calculated by empirical correlations based on the in/outlet flow angles, and then 2D airfoil planar sections are designed carefully, followed by 2D B2B NS calculations. The designed planar sections are stacked along the spanwise direction, leading to a 3D surfaced airfoil shape. To consider the 3D effect on turbine performance, 3D multistage Euler calculation, single row, and multistage NS calculations are performed.