• Title/Summary/Keyword: 가스터빈 모델

Search Result 151, Processing Time 0.027 seconds

A compressor Performance Prediction Method for Analyzing the Off-Design Effect of the Gas Turbine Cycle in IGCC Power Plant (IGCC 발전소용 가스터빈 사이클 탈설계점효과 분석을 위한 압축기 성능예측 방법)

  • Kim, Sung-Gon;Lee, Chan
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1997.10a
    • /
    • pp.99-104
    • /
    • 1997
  • 기존의 천연가스 가스터빈 시스템을 IGCC 발전소에 적용함에 있어 야기되는 탈설계점효과를 고려할 수 있는 압축기 성능곡선의 예측방법을 제안하였다. 압축기 성능해석방법으로는 익렬요소방법에 전압력손실, 유동편차각 모델들을 결합하여 사용하였으며, 본 방법에 의한 예측결과와 실제 압축기 성능실험결과를 비교하였다. 예측결과가 다양한 압축기 운전조건에 대해 시험결과와 비교적 잘 일치하였으며, 이를 통해 본 예측방법이 IGCC 공정설계 및 성능평가시 가스터빈 탈설계점 효과를 분석할 수 있는 기본 모듈로 사용될 수 있을 것이다.

  • PDF

등가 스프링 요소를 이용한 다단 축 동적 모델 개선에 관한 연구

  • 최성환;강중옥;홍성욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.111-111
    • /
    • 2004
  • 회전축계는 발전기의 터빈이나 가스터빈 그리고 항공기의 회전익, 선박, 자동차등 산업전반에 널리 사용되어지고 있다. 이러한 회전축계의 안정성 확보와 성능향상을 위해서는 정확한 동적 모델링이 필요하며 지금까지 많은 연구가 되어 왔다. 일반적으로 회전축계의 동특성 이론 모델은 회전관성, 자이로모멘트, 전단변형을 포함하는 티모센코 축 요소를 널리 사용하고 있으며, 많은 연구를 통해 그 유용성이 입증되어 왔다.(중략)

  • PDF

5MW Class Gas Turbine Engine Test Cell (5MW급 발전용 가스터빈 엔진 성능시험 설비)

  • Nam, Sam-Sik;Song, Ju-Young;Kim, Sung-Hyun;Lee, Ki-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.339-342
    • /
    • 2010
  • Doosan Heavy Industries & Construction Co., Ltd. constructed a gas turbine engine test cell to verify operating characteristics and design parameters of 5MW class gas turbine engine for power generation under developing. Engine test cell was designed to satisfy critical requirements to scrutinize all performance parameters of the engine with safe and reliability in accordance with design specification. As the test cell developed can effectively reproduce engine operation conditions covering from start-up to maximum power condition, it can be utilized to make a continuing design improvement of the engine based on practical test data at full stretch. Moreover, it is expected to be serviceable to develop derivative engines and be utilized to put them into serial production and contribute to a competitiveness reenforcement as a gas turbine engine manufacturer.

  • PDF

Study on the Performance Variation of Gas Turbine Air Compressor Integrated with Air Separation Unit in IGCC Power Plant (IGCC 발전소내 공기분리장치와 연계된 가스터빈 공기압축기의 성능변화에 관한 연구)

  • Lee, Chan;Kim, Hyung-Taek;Yoon, Yong-Seung
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.10b
    • /
    • pp.98-103
    • /
    • 1996
  • 석탄가스화복합발전소내 공기분리장치와 연계된 가스터빈 공기압축기의 성능병화를 예측할 수 있는 해석방법을 제안하였다. 공기분리장치와 연계된 가스터빈용 공기압축기의 성능변화는 유선곡률방법과 압력손실모델을 결합한 해석방법을 사용하였으며, 예측결과들을 실제 압축기성능 시험 결과와 비교하여 예측정확도를 검증하였다. 제안된 압축기성능 해석방법을 근간으로, 압축기와 공기분리장치의 연계조건인 열교환기의 핀치포인트 온도차, 추출공기량 및 추출 공기압력이 압축기 성능변화에 미치는 영향을 정량적으로 예측하였다. 공기추출량이 늘어나거나 핀치포인트 온도차가 커질수록, 압축기의 압축비 및 소요동력은 증가하나, 압축기 효율은 공기추출량의 증가에 따라 고압공기추출시에는 저하되고, 저압공기추출시에는 향상되었다. 더 나아가, 압축기의 일반화된 성능특성곡선의 제시를 통해, 압축기 효율을 극대화 할 수 있는 압축기/공기분리장치 간 연계조건의 최적화를 시도하였다.

  • PDF

Combustion Instability Analysis Using Network Model in an Annular Gas Turbine Combustor (환형 가스터빈 연소기에서 네트워크 모델을 이용한 연소불안정 해석)

  • Pyo, Yeongmin;Yoon, Myunggon;Kim, Daesik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.72-80
    • /
    • 2018
  • Combustion instabilities are caused by the feedback relationship between heat release perturbations and acoustic pressure oscillations in the combustor. Studies on the combustion instability in an annular combustor have recently received great attention due to the enhanced NOx requirement in aero-engines. In this study, a thermoacoustic network model was developed in order to calculate the acoustic characteristics for various modes in the annular combustor. The network model is combined with flame transfer function(FTF) in order to calculate the stability of the combustor. Numerical results are compared with measurement data.

Combustion Instability Analysis Using Network Model in an Annular Gas Turbine Combustor (네트워크 모델을 이용한 환형 가스터빈 연소기에서의 연소불안정 해석)

  • Pyo, Yeongmin;Yoon, Myunggon;Kim, Daesik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.896-904
    • /
    • 2017
  • Lean premixed combustion was successful in meeting current NOx emission regulations. However, these often leads to combustion instability. This phenomena results from the feedback relationship between heat release perturbations and acoustic pressure oscillations in the combustor. Researches on the combustion instability in an annular combustor have recently received great attention due to the enhanced NOx requirement in aero-engines. In this study, the thermoacoustic network model has been developed in order to calculate the acoustics for longitudinal as well as circumferential modes in the annular combustor. The combustion model in the network model is calculated by flame transfer function(FTF). Numerical and analytical results are compared to an measurement data.

  • PDF

Prediction of Pollutant Emissions from Lean Premixed Gas Turbine Combustor Using Chemical Reactor Network (화학반응기 네트워크을 이용한 희박 예혼합 가스터빈 연소기에서의 오염물질 예측에 관한 연구)

  • Park, Jung-Kyu;Nguyen, Truc Huu;Lee, Min-Chul;Chung, Jae-Wha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.225-232
    • /
    • 2012
  • A chemical reactor network (CRN) was developed for a lean premixed gas turbine combustor to predict the emission of pollutants such as NOx and CO. In this study, the predictions of NOx and CO emissions from lean premixed methane-air combustion in the gas turbine were carried out using CHEMKIN and a GRI 3.0 methane-air combustion mechanism, which includes the four NO formation mechanisms for various load conditions. The calculated results were compared with experimental data obtained from a modified test combustor to validate the model. The contributions of the four NO pathways were investigated for various load conditions. The effects of nonuniformity of the mass flux and of the equivalence ratio of the injector on the NOx formation were investigated, and a method of reducing the pollutant formation was suggested for the development of a sub-10 ppm gas turbine combustor.

Modeling and Simulation of a Gas Turbine Engine for Control of Mechanical Propulsion Systems (기계식 추진 시스템 제어를 위한 가스터빈 엔진 모델링 및 시뮬레이션)

  • Back, Kyeongmi;Huh, Hwanil;Ki, Jayoung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.43-52
    • /
    • 2021
  • In this study, performance modeling and simulation of a gas turbine engine, a constituent module, was performed for the integrated control of the CODOG structure, mechanical propulsion systems. The engine model used MATLAB/Simulink to facilitate integration with the host controller and other components, and was configured to enable input/output settings suitable for the system configuration and purpose. In general, engine manufacturers do not provide performance data for the engine and components. Therefore, as a modeling method for a gas turbine, a CMF method that obtains performance data by scaling the map of components was applied. Using the generated model and simulation program, steady-state and dynamic simulation analysis tests were performed, and reliability within 5% of the maximum error was secured for the final output of power.

Parametric Study of Gas Turbine Engine Disc using Axisymmetry and Sector Analysis Model (축대칭 및 섹터 해석 모델을 활용한 가스터빈 엔진 디스크의 형상 변수 고찰)

  • Huh, Jae Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.769-774
    • /
    • 2013
  • Turbine blades and disc, which are one of the most important rotating parts of a gas turbine engine, are required to have highly efficient performance in order to minimize the total life cycle costs. Owing to these requirements, these components are exposed to severe conditions such as extreme turbine inlet temperatures, high compression ratios, and high speeds. To evaluate the structural integrity of a turbine disc under these conditions, material modeling and finite element analysis techniques are essential; furthermore, shape optimization is necessary for determining the optimal solution. This study aims to generate 2D finite element models of an axisymmetry model and a sector one and to perform thermal-structural coupled-field analysis and contact analysis. Structurally vulnerable areas such as the disc bore and disc-blade interface region are analyzed by a parametric study. Finally, an improved design is provided based on the results, and the necessity of elaborate shape optimization is confirmed.

Comparative Study of Near-Wall Treatment Methods for Prediction of Heat Transfer over Gas Turbine Nozzle Guide Vane (가스터빈 노즐 베인의 열전달 예측을 위한 벽면처리법 비교연구)

  • Bak, Jeonggyu;Kim, Jinuk;Lee, Seawook;Gang, Youngseok;Cho, Leesang;Cho, Jinsoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.639-646
    • /
    • 2014
  • The comparative analysis of near-wall treatment methods that affect the prediction of heat transfer over the gas turbine nozzle guide vane were presented. To achieve this objective, wall-function and low Reynolds number methods, and the transition model were applied and simulated using NASA's C3X turbine vane. The predicted turbine vane surface pressure distribution data using the near-wall treatment methods were found to be in close agreement with experimental data. However, the predicted vane metal temperature and heat transfer coefficient displayed significant differences. Overall, the low Reynolds method and transition model did not offer specific advantages in the prediction of temperature and heat transfer than did the wall-function method. The Reynolds stress model used along with the wall-function method resulted in a relatively high accuracy of prediction of the vane metal temperature and heat transfer coefficient.