DOI QR코드

DOI QR Code

Comparative Study of Near-Wall Treatment Methods for Prediction of Heat Transfer over Gas Turbine Nozzle Guide Vane

가스터빈 노즐 베인의 열전달 예측을 위한 벽면처리법 비교연구

  • Received : 2014.01.03
  • Accepted : 2014.05.19
  • Published : 2014.07.01

Abstract

The comparative analysis of near-wall treatment methods that affect the prediction of heat transfer over the gas turbine nozzle guide vane were presented. To achieve this objective, wall-function and low Reynolds number methods, and the transition model were applied and simulated using NASA's C3X turbine vane. The predicted turbine vane surface pressure distribution data using the near-wall treatment methods were found to be in close agreement with experimental data. However, the predicted vane metal temperature and heat transfer coefficient displayed significant differences. Overall, the low Reynolds method and transition model did not offer specific advantages in the prediction of temperature and heat transfer than did the wall-function method. The Reynolds stress model used along with the wall-function method resulted in a relatively high accuracy of prediction of the vane metal temperature and heat transfer coefficient.

난류모델에서 벽면처리법이 터빈 노즐 베인의 열전달 예측에 미치는 영향을 비교 분석하였다. 본 연구를 위해 NASA의 C3X 터빈 노즐 베인을 사용하였다. 벽함수 방법, 저레이놀즈수 방법, 천이모델을 사용하여 베인 표면에서의 압력 및 온도를 해석하였다. 해석 결과 터빈 노즐 베인의 중간 압력분포는 각 벽면처리법에 따른 차이 없이 실험값과 잘 일치하였다. 그러나 터빈 노즐 베인의 온도와 열전달 계수는 각 벽면처리법에 따라 큰 차이를 보였다. 전반적으로 저레이놀즈수 방법과 천이모델은 벽함수 방법에 비해 온도 및 열전달 계수 예측에 특별한 이점을 보이지 않았으며, 벽함수 방법을 적용한 레이놀즈응력 난류모델이 터빈 노즐 베인 표면의 온도 및 열전달 계수를 비교적 잘 예측하였다.

Keywords

References

  1. Saravanamutto, H. I. H., Rogers, G. F. C. and Chohen, H., 2001, "Gas Turbine Theory," 5th edition, Prentice Hall, New Jersey, pp. 305-366.
  2. Durbine, P. A., 2009, "Limiters and Wall Treatments in Applied Turbulence Modeling," Fluid Dyn. Res., 41, 012203. https://doi.org/10.1088/0169-5983/41/1/012203
  3. Wilcox, D. C., 2004, "Tubulence Modeling for CFD," 2nd Edition, DCW industries, pp. 103-218.
  4. Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G. and Völker, S., 2006, "A Correlation Based Transtion Model Using Local Variable-Part1: Model Formualtion," Journal of Turbomachinery, Vol. 128, No. 3, pp. 413-442. https://doi.org/10.1115/1.2184352
  5. Dong, P., Wang, Q., Guo, Z., Huang, H. and Feng, G., 2009, "Conjugate Calcualtion of Gas Turbine Vanes Cooled with Leading Edge Films," Chinese Journal of Aeronautics, Vol. 22, No. 2, pp. 145-152. https://doi.org/10.1016/S1000-9361(08)60080-1
  6. Ledezma, G. A., Laskowski, G. M. and Tolpadi, A. K., 2008, "Tubulence Model Assessment for Conjugate Heat Transfer in a High Pressure Turbine Vane Model," ASME Paper GT2008-50498.
  7. Jiang, L., Razinsky, E. H. and Moon, H. K., 2013, "Three-Dimensional RANS Prediction of Gas-Side Heat Trasnfer Coefficients on Turbine Blade and Endwall," Journal of Turbomachinery, Vol. 135, No. 2, 021005.
  8. Hylton, L. D., Mihelc, M. S., Turner, E. R., Nearly, D. A. and York, R. E., 1983, "Analytical and Experimental Evaluation of the Heat Transfer Distribution Over the Surface of Turbine Vane," NASA-CR-168015.
  9. Jiang, L. and Razinsky, E. H., 2007, "Conjugate Heat Transfer Analysis of a Cooled Turbine Vane using the V2F Turbulence Model," Journal of Turbomachinery, Vol. 129, No. 4, pp. 773-781. https://doi.org/10.1115/1.2720483
  10. White, F. M., 1991, "Viscous Fluid Flow," McGraw-Hill, 2nd edition, New York, pp. 26-40.
  11. York, W. D. and Leylek, J. H., 2003, "Threedimensional Conjugate Heat Transfer Simulation of an Internally-cooled Gas Turbine Vane," ASME Paper GT2003-38551.
  12. Menter, F. R., 1994, "Two-Equation Eddy- Viscosity Turbulence Models for Engineering Applications," AIAA-Journal, Vol. 32, No. 8, pp. 269-289.
  13. Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B. and Speziale, C. G., 1992, "Development of Turbulence Models for Shear Flows by a Double Expansion Technique," Physics of Fluids A. Vol. 4, No. 7, pp. 1510-1520. https://doi.org/10.1063/1.858424
  14. Speziale, C. G., Sarkar, S. and Gatski, T. B., 1991, "Modeling the Pressure-Strain Correlation of Turbulence : an Invariant Dynamical Systems Approach," Journal of Fluid Mechanics, Vol. 227, pp. 245-272. https://doi.org/10.1017/S0022112091000101
  15. Ansys Inc., 2012, "Ansys CFX Theroy Guide V14," pp. 89-154.
  16. Mayle, R. E., 1991, "The Role of Laminar- Turbulent Transition in Gas Turbine Engines," Journal of Turbomachinery, Vol. 113, No. 4. pp. 509-536. https://doi.org/10.1115/1.2929110
  17. Mohsen, J., 2011, "Boundary Layer Transtion Flow in Gas Turbines," Chalmers Univ., Goteborg, pp. 5-21.