• Title/Summary/Keyword: 가스냉각

Search Result 573, Processing Time 0.018 seconds

A study for detection of melt flow zone about polyethylene butt fusion joints (폴리에틸렌 배관 버트융착부 열용융거리 측정에 대한 연구)

  • Kil, Seonghee;Kim, Younggu;Jo, NYoungdo;Lee, Yeonjae
    • Journal of Energy Engineering
    • /
    • v.25 no.4
    • /
    • pp.103-109
    • /
    • 2016
  • Polyethylene pipes has useful benefits which are anti-corrosive and flexible material, so it is used to gas pipes but also class 3 water pipes of nuclear power plant, process pipes of petrochemical plant and chemical plant. So the usage of polyethylene pipes is widely increased. But it has been limited for the usage of polyethylene, because it can not be directly detected to fusion joints by using non destructive evaluation. Polyethylene pipes are connected by two methods, one is butt fusion and the other is electrofusion. Butt fusion is widely used to connecting the pipes. It is proposed to method for determining the reliability of joints in this study that is detection of the melt flow zone at fusion joints. In this study, middle density polyethylene is used, outside diameter of the test specimen is 225mm and thickness is 20.5mm. Speed of ultrasonic of this test specimen is 2,200m/s. Test specimens were fabricated by varying the heating time which means from 0% to 130% applying time through heating plate to polyethylene for detecting melt flow zone. Also 4 additional test specimens were made, one was made that not scrapping attached surface of pipes but applying 100% of the proper heating time and the others were made to include of soil, gravel and vinly tape paper at fusion joints, that were also applied 100% of proper heating time. Ultrasonic testing to measure the melt flow zone of 20 test specimens was conducted by using 3.5MHz and 5.0MHz ultrasonic probes and melt flow zone measuring was conducted to three times at different point to one specimen. To differentiate the melt flow zone signal, post image processing was equally conducted to all test results and image levels, contrast, sharpen, threshold were adopted to all teat results and the test results were displayed gray scale. From the results, for the shorter heating times the reflection area of multiple echo have been increased, so the data was obtained from the position where it can be eliminated as much as possible. At 80% of proper heating time(168 sec.), the signal of melt flow zone was obtained clearly, so measuring could be conducted. From 7% of proper heating time(15 sec.) to shorter heating times. we could not obtain the signal because test specimen was not fused. From the result, we can verify that measuring of melt flow zone by using phased array ultrasonic imaging method is possible. And we can verify to complete and incomplete butt fusion by measuring the melt flow zone.

Properties of Quercus variabilis bio-oil prepared by sample preparation (시료 조건에 따른 굴참나무 바이오오일의 특성)

  • Chea, Kwang-Seok;Jo, Tae-Su;Choi, Seok-Hwan;Lee, Soo-Min;Hwang, Hye-Won;Choi, Joon-Weon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.148-156
    • /
    • 2015
  • In this study the differences in the sample size and sample input changes as characteristics of bio-oil oak(Quercus variabilis), the oak 0.5~2.0 mm of the oak weighing 300~900g was processed into bio-oil via fast pyrolysis for 1.64 seconds. In this study, the physico-chemical properties of biooil using oak were investigated. Fast pyrolysis was adopted to increase the bio-oil yield from raw material. Although the differences in sample size and sample input changes in the yield of pyrolysis products were not significantly noticeable, increases in the yield of bio-oil accounted for approximately 60.3 to 62.1%, in the order of non-condensed gas, and biochar. When the primary bio-oil obtained by the condensation of the cooling tube and the seconary bio-oil obtained from the electric dust collector were measured separately, the yield of primary bio-oil was twice as higher than that of the secondary bio-oil. However, HHV (Higher Heating Value) of the secondary bio-oil was approximately twice as higher than that of the primary bio-oil by up to 5,602 kcal/kg. The water content of the primary bio-oil was more than 20% of the moisture content of the secondary bio-oil, which was 10% or less. In addition, the result of the elemental analysis regarding the secondary bio-oil, its primary carbon content was higher than that of the primary bio-oil, and since the oxygen content is low, the water content as well as elemental composition are believed to have an effect on the calorific value. The higher the storage temperature or the longer the storage period, the degree of the viscosity of the secondary bio-oil was higher than that of the primary bio-oil. This can be the attributed to the chemical bond between the polymeric bio-oil that forms during the storage period.

Steroid Effect on the Brain Protection During OPen Heart Surgery Using Hypothermic Circulatory Arrest in the Rabbit Cardiopulmonary bypass Model (저체온순환정지법을 이용한 개심술시 스테로이드의 뇌보호 효과 - 토끼를 이용한 심폐바이패스 실험모델에서 -)

  • Kim, Won-Gon;Lim, Cheong;Moon, Hyun-Jong;Chun, Eui-Kyung;Chi, Je-Geun;Won, Tae-Hee;Lee, Young-Tak;Chee, Hyun-Keun;Kim, Jun-Woo
    • Journal of Chest Surgery
    • /
    • v.30 no.5
    • /
    • pp.471-478
    • /
    • 1997
  • Introduction: The use of rabbits as a cardiopulmonary bypass(CPB) animal model is extremely dif%cult mainly due to technical problems. On the other hand, deep hypothermic circulatory arrest(CA) is used to facilitate surgical repair in a variety of cardiac diseases. Although steroids are generally known to be effective in the treatment of cerebral edema, the protective effects of steroids on the brain during CA are not conclusively established. Objectives of this study are twofold: the establishment of CPB technique in rabbits and the evaluation of preventive effect of steroid on the development of brain edema during CA. Material '||'&'||' Methods: Fifteen New Zealan white rabbits(average body weight 3.5kg) were divided into three experimental groups; control CA group(n=5), CA with Trendelenberg position group(n=5), and CA with Trendelenberg position + steroid(methylprednisolone 30 mglkg) administration group(n=5). After anesthetic induction and tracheostomy, a median sternotomy was performed. An aortic cannula(3.3mm) and a venous ncannula(14 Fr) were inserted, respectively in the ascending aorta and the right atrium. The CPB circuit consisted of a roller pump and a bubble oxygenator. Priming volume of the circuit was approximately 450m1 with 120" 150ml of blood. CPB was initiated at a flow rate of 80~85ml/kg/min, Ten min after the start of CPB, CA was established with duration of 40min at $20^{\circ}C$ of rectal temperature. After CA, CPB was restarted with 20min period of rewarming. Ten min after weaning, the animal was sacrif;cod. One-to-2g portions of the following tissues were rapidly d:ssected and water contents were examined and compared among gr ups: brain, cervical spinal cord, kidney, duodenum, lung, heart, liver, spleen, pancreas. stomach. Statistical significances were analyzed by Kruskal-Wallis nonparametric test. Results: CPB with CA was successfully performed in all cases. Flow rate of 60-100 mlfkgfmin was able to be maintained throughout CPB. During CPB, no significant metabolic acidosis was detected and aortic pressure ranged between 35-55 mmHg. After weaning from CPB, all hearts resumed normal beating spontaneously. There were no statistically significant differences in the water contents of tissues including brain among the three experimental groups. Conclusion: These results indicate (1) CPB can be reliably administered in rabbits if proper technique is used, (2) the effect of steroid on the protection of brain edema related to Trendelenburg position during CA is not established within the scope of this experiment.

  • PDF