• Title/Summary/Keyword: 가스구동히트펌프

Search Result 14, Processing Time 0.027 seconds

Analysis of Energy Consumption & Environmental Load of Electric Heat Pump and Gas Engine Driven Heat Pump (전기구동 히트펌프(EHP)와 가스엔진구동 히트펌프(GHP)의 에너지소비량 및 환경부하 분석)

  • Kim, Sang-Hun;Lim, Sang-Cae;Chung, Kwang-Seop;Kim, Young-Il
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.933-937
    • /
    • 2006
  • Energy is motive power that makes convenient society. But, our country's energy is depending on most import. Also, energy and environmental issue are important problem in community of nations. The purpose of this study is to analysis the energy consumption and environmental load of EHP and GHP in Medium and small-scaled office building. The annual energy consumption used to cooling and heating by EHP was 10 percent more than GHP. And annual energy cost of EHP was 33 percent more expensive than GHP. But, Compared to the annual $CO_2$ emission, EHP was 6 percent less than GHP. Therefore, equipment selection should be consider environmental load as well as energy consumption and cost.

  • PDF

Prediction of GHP Performance Using Cycle Analysis (사이클 해석을 통한 GHP 성능 예측)

  • Cha, Woo Ho;Choi, Song;Chung, Baik Young;Kim, Byung Soon;Jeon, Si Moon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • In this paper a prediction method of GHP performance is proposed for increasing design accuracy. Two compressors with different capacity and 2311cc gas engine are used for prediction and the target capacity of GHP is 25HP. For predicting GHP performance at first the operation points are randomly selected and then as compared with compressor performance date and heat exchanger characteristic, more accurate operating points are decided through recursive calculation. Lastly engine performance date is used for calculating gas consumption volume. Predicting heating mode performance of GHP, evaporator is separated to the two section of absorbing heat in outdoor air and in engine. From the experimental results, it was found that the simulation model is good for the predicting GHP efficiency and the difference of predicted and measured efficiency is less than 5%.

A Study on the Optimization of Heating and Cooling System in University Campus (대학 캠퍼스 냉·난방시스템 최적화 방안 연구)

  • Park, So-Yeon;Park, Hyo-Soon;Lee, Sang-Hyeok;Kim, Ji-Yeon;Hong, Sung-Hee
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.139-144
    • /
    • 2010
  • The demands are increasing for the efficient heating and cooling system and thermal comfort environment because of changes in climate and environment, and deterioration of buildings and facilities can cause education budget to increase. So the study to apply heating and cooling system to university is urgently needed to improve an optimum energy saving system, educational environment and convenience of maintenance. For this reason, we selected a university campus in Seoul then came to understand the current situation and found some problems. We drew alternatives from comparative analysis of them. It selects representative building and carries out economic analysis to evaluate characteristics of energy consumption and economics on each type of heating and cooling system. As a result we drew the optimum system from those processes as previously stated. We studied 3 available systems, absorption chiller, EHP(Electric Heat Pump) and GHP(Gas Engine Heat Pump). According to LCC analysis suppose that the value of EHP is 1, it came out that the value of absorption chiller is 1.5 and the value of GHP is 2.2. This study, suggesting the optimum heating and cooling system, will support educational and research activities furthermore effect to maximize energy efficiency. Ultimately it is expected that it will contribute to make eco-friendly Green Campus.

Thermodynamic Analysis on Hybrid Turbo Expander - Heat Pump System for Natural Gas Pressure Regulation (히트펌프를 적용한 터보팽창기 천연가스 정압기지의 열역학적 분석)

  • Sung, Taehong;Kim, Kyoung Hoon;Han, Sangjo;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.13-20
    • /
    • 2014
  • In natural gas distribution system, gas pressure is regulated correspond to requirement using throttle valve which is releasing huge pressure energy as useless form. The waste pressure can be recovered by using turbo machinery devices such as a turbo expander. In this process, excessive temperature drop occurs due to Joule-Thompson effect during the expansion process. Installing natural gas boiler before or after the turbo expander prevents temperature drop. Fuel cell or gas engine hybrid system further improve the efficiency, but 1~2% of total transporting natural gas is used for operating the hybrid system. In this study, a heat pump system is proposed as a preheating device which can be operated without using transporting natural gas. Thermodynamic analysis on evaporating and condensing temperatures and refrigerants is conducted. Results show that R717 is proper refrigerant for the hybrid system with high COP and low turbine work within the defined operating conditions. In domestic usage in Korea, the heat pump system has more economic feasibility owing to natural gas being imported with a high price of LNG form.

Economic Analysis of Heat Pump System in Educational Building -Focused on the High School of Twenty Four Classes- (교육용 건축물의 히트펌프 냉난방시스템에 대한 경제성 분석 -24학급 규모의 고등학교를 중심으로-)

  • Park, Ryul;Park, Min-Yong;Kim, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.879-887
    • /
    • 2003
  • Buildings with heating and cooling systems have been increased, since the requirement of thermal comfort for residents is grown. Heating and cooling systems, have been changed from two separate systems to one multi-function system which includes both heating and cooling. Especially, heat pump heating and cooling system has been adopted for general classrooms in schools since education environment improvement project has been launched. This research suggests the best option for the heat pump heating and cooling system in educational buildings through economic assessments for four alternative systems based on electric heat pump (EHP) and gas engine driven heat pump (GHP), which are most widely used for elementary, middle and high schools. The model buildings are in the Y high school which has 24 classes of new construction building, which will be built soon. Annual energy consumption for alternative systems uses BECS 3.10, which can be used for system simulation.

Survey and Field test for the air conditioning systems (냉방기기별 현장측정 및 조사)

  • Kim, Sung-Soo;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.212-217
    • /
    • 2009
  • 냉방기기별 하절기 가동률 및 동시사용률 실태를 조사하여 건물의 용도 및 면적 별냉방기기의 시간별 부하률 과 동시사용률, 연간 사용일수 가동시간을 조사하여 냉방기기별 에너지 소비현황 하절기 에너지수급 영향분석을 하고자 하였다. 그리고 국내에 설치된 냉방기기를 대상으로 현장조사 진단을 통해 냉방기기 사용 실태 및 냉방성능을 측정하고, 현장 조사를 통한 만족도와 불만사항을 조사하여 냉방기기 보급 및 운전의 효율을 상승시키고 모든 냉방기기 국산화를 위한 기초자료와 이를 위한 정책적 지원방안 및 향후 냉방기기 기술개발 방향을 제시하고자 한다. 또한 냉방기기별로 문제점을 도출하여 향후 정책제도 개선에 반영할 수 있도록 하였다.

  • PDF

Economic Analysis of Heat Pump System through Actual Operation (히트 펌프 냉난방 시스템의 실사용을 통한 경제성 분석)

  • Shin, Gyu-Won;Kim, Gil-Tae;Joo, Ho-Young;Lee, Jae-Keun
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.921-926
    • /
    • 2006
  • The present study has been conducted economic analysis through actual operation of EHP and GHP which are installed at the same building of an university Cost items, such as initial cost, annual energy cost and maintenance cost of each system are considered to analyze LCC and economical efficiency is compared. The initial cost is considered on the basis of actual costs, and annual energy cost is converted into the cost after measuring electricity and gas consumption a day. LCC applied present value method is used to assess economical efficiency of both them. Variables used to LCC analysis are electricity cost escalation rate, natural gas cost escalation rate, interest rate, and service lives and when each of them are 4%, 2%, 8%, and 20 years, results of analysis short that EHP(148,257,306 won) is 8.05%(12,981,990 won) more profitable than GHP(161,239,295 won).

  • PDF

A Study on the development of Gas Engine Controller for Gas Heat Pump (Gas Heat Pump 구동을 위한 가스 엔진 제어기의 개발)

  • 이중현;고국원;고경철;김종형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.618-621
    • /
    • 2004
  • Compressors in Large Multi-room air conditioning system are often driven by gas heat pumps. The advantages of GHP are their high level of heating performance and low cost because they use the LNG fuel to drive engine. We developed engine control system. The developed system controls engine speed based on proportional, integral and derivative (PID) method. This controller is designed to eliminate the need for continuous operator attention on engine revolution control. The control system includes 4 spark coil drivers, fuel drivers and relay drivers to make engine's operating more stable. The experiments of control engine revolution of this system are based on the various load conditions.

  • PDF

Evaluation of actual Energy consumption & Simulation of Gas Engine VRF System and Comparison with Electric VRF System (가스 엔진 VRF시스템의 에너지 실사용량 & 시뮬레이션 평가와 전기 구동 VRF 시스템과의 성능비교에 관한 연구)

  • Choi, Sul-Geon;Jeon, Jong-Ug;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.67-74
    • /
    • 2017
  • Purpose: As the recent climate environment changes so rapidly, environmental problems such as hot weather and fine dust have occurred, and interest in environmental policies and technology development is increasing in countries around the world. Similarly in the Architecture, researches to reduce greenhouse gas emissions and to reduce energy application are actively conducted. Looking at previous studies, it is analyzed that the electric VRF is more energy efficient than the gas engine VRF. However, energy costs have changed due to recent price hikes and discounts on gas charges due to high electricity consumption in summer. Method: In this study, the actual building of Gas Engine VRF system was modeled using SketchUp program, and EnergyPlus was used to simulate actual building. Also, Electric VRF system was simulated, and compared with Gas Engine VRF system. Result: The total secondary energy requirement of Electric VRF system was 19.6% less than that of the Gas Engine VRF system, But when analyzing with primary energy requirement, EHP used 15.8% more energy. CO2 emissions were also estimated to be 16.9% more EHP. Energy costs were 14.8% more in Electric VRF systems, because their electricity charges are 0.6 to 160% more expensive than gas charges.