• Title/Summary/Keyword: 가수분해반응

Search Result 922, Processing Time 0.029 seconds

Decomposition Studies of DFP Using Transition Metal Catalysts (전이금속촉매를 사용한 DFP 분해 성능 연구)

  • Kye, Young-Sik;Jeong, Keunhong;Chung, Woo Young
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • Cu(II)-organic complexes were synthesized with Lewis base organic ligands including diamine, aminothiol, and dithiol to determine the reactivity for DFP hydrolysis. Results show that the aminothiol catalyst enhances the hydrolysis of DFP in three folds compared to diamine type because aminothiol has higher basicity than diamine. Due to low solubility of Cu(II)(1,2-ethane dithiol)$(NO_3)_2$, it is impossible to compare directly the rates in homogeneous condition. However, the rate of dithol complex is even 1.6 times faster than that of the diamine type. The reactivity of zeolite for DFP hydrolysis is also evaluated. NaY type does not promote the hydrolysis, but RuNaY shows relatively lower reactivity than those of Cu(II)-organic ligands complexes.

Process Optimization of Peptides Production from Protein of Crab (Ovalipes punctatus) and Its Antioxidant Capacity Analysis (꽃게(Ovalipes punctatus) 단백질 유래 항산화 기능성 펩타이드 제조 최적공정 확립 및 이화학적 특성)

  • Ha, Yoo Jin;Kim, Do Hyun;Lee, Byung Hee;Yoo, Sun Kyun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.367-377
    • /
    • 2018
  • Swimming crab(Ovalipes punctatus) is produced in Korea and utilized as semi-processed food at streamed cooked state. Recently, protein hydrolysates have been known as having function such as antioxidant, suppression of hypertension, immunodulatory, alleviation of pain, and antimicrobial activity. This research was investigated to find the functional antioxidant from crab hydrolysates. To fine optimal protease enzyme, alcalase, bromelain, flavourzyme, neutrase, papain, and protamex were selected to evaluate the DPPH radical scavenging activity and finally bromelain to show the best activity was selected. The molecular weight of bromelain hydrolysates were distributed with range from 500 to 3,200 Da and 7 different molecules or more. The amino acids related to antioxidant capacity was about 42.54%. The processes optimization study used was the response surface methodology. The ranges of processes were the reaction temperature of 40 to $60^{\circ}C$, pH 6 to 8, and enzyme concentration 1 to 3%(w/v). As a result, the optimization of process was determined at temperature of $55^{\circ}C$, pH of 6.5, and enzyme concentration of 3%(w/v). In these conditions, degree of hydrolysates were maximum 71.60%. Therefore, we expect that those products are useful as functional food ingredients.

Characteristics of Enzymatic Hydrolysis of Sodium Hydroxide pretreated Suwon Poplar (NaOH 전처리된 현사시나무의 효소가수분해 특성)

  • 박영기;오정수
    • Journal of Korea Foresty Energy
    • /
    • v.20 no.2
    • /
    • pp.20-27
    • /
    • 2001
  • An effective method for production of glucose was developed using enzymatic hydrolysis of Suwon poplar by the cellulase. Enzymatic hydrolysis of wood is the reaction to produce glucose from wood using enzyme which derives from microorganism. Glucose can be transferred easily to ethanol by fermentation. Ethanol is the starting material for producing acetone, butanol, citric acid and lactic acid. The mechanism of the enzymatic hydrolysis of cellulose are reasonably explained in terms of the sequential action of three different types of enzymes, endo-cellulase, ex-cellulase, and $\beta$ -glucosidase. The goal of this work was to investigate the cellulose hydrolysis pretreated polar with various concentration NaOH, the crystallinity of cellulose, lignin contents and the degree of hydrolysis.

  • PDF

Monitoring on Characteristics of Soybean Flour Hydrolyzed by Various Proteolytic Conditions (콩분말의 단백질 가수분해 조건에 따른 특성 모니터링)

  • Jeong Kyo-Ho;Seo Ji-Hyung;Kim Jeong-Hoon;Kim Kwang-Soo;Jeong Yong-Jin
    • Food Science and Preservation
    • /
    • v.13 no.1
    • /
    • pp.71-76
    • /
    • 2006
  • We monitored the characteristics of soybean hydrolysate prepared under various hydrolysis condition using response surface methodology. The yield was affected by protease content but 1be effect of hydrolysis time to yield gradually increased at over $0.4\%$ of protease, while the $R^2$ of polynomial equation was 0.978 (p<0.01). The soluble solid enlarged by increase of both variables and the $R^2$ of polynomial equation was 0.954 (p<0.01). The degree of hydrolysis was affected by protease content at low (under $0.4\%$) protease and maximized at $0.57\%$ protease and 5.49 hrs. The $R^2$ of polynomial equation for the degree of hydrolysis was 0.916 (P<0.05). The calcium intolerance capacity showed similar pattern like yield but the effect of hydrolysis time was rapidly increased at over $0.4\%$ protease. The $R^2$ of polynomial equation for calcium intolerance capacity was 0.932 (p<0.05). The total phenolic compounds increased in proportion to protease content and hydrolysis time, while the $R^2$ of polynomial equation was 0.920 (p<0.05). According to the results of this study, the optimal conditions for soybean hydrolysis were predicted to be $0.51\~0.66\%$ of protease and $6.5\~9.0\;hrs$, and the predicted values and actual values of each response variable were similar to each other when the hydrolysis was performed at a random point within the optimal range.

반응염료의 현황과 문제점

  • 김공주
    • Textile Coloration and Finishing
    • /
    • v.6 no.4
    • /
    • pp.77-91
    • /
    • 1994
  • 1956년 반응염료가 시판된 이래 장족의 발전을 하였으며, 구형의 cellulose용 염색을 추월하여 거의 대부분의 cellulose의 염색에 반응염료, 일변도로 사용되고 있는 것이 현실이다. 그러나 많은 반응 염료의 장점에도 불구하고 세월이 가면서 문제점도 만만치 않다. 장점으로는 색상이 선명하고 견뢰도가 우수하고 응용범위가 넓고 조작이 용이하다는 점이며, 문제점으로 나타난 것은 흡착염색공정에서 다량의 전해질과 알칼리제를 첨가함에도 불구하고 흡착율, 고착율이 낮고 염색후의 세정공정과 많은 물과 energy 및 시간을 필요로 한다는 사실이다. 또한 최근 더욱 관심을 끈 것은 반응염료의 가수분해 현상으로 인하여 다량의 가수분해된 염료가 폐수화하여 버려짐으써 심각한 공해가 야기할 뿐만 아니라 염색물에 부착하여 견뢰도에도 영향이 많다. 이런 문제를 염료제조업계에서는 해결하지 않으면 안될 시점에 와 있다. 이와 같은 문제점을 염료의 구조적인 면, 염색적인 면 그리고 소비자의 취급적인 면에서 검토하여 과거의 영광을 존속하기 위하여 개량형의 염료를 합성하여 고고착률, wash-off성의 양호 및 일광, 염소, 땀, 세탁 등에 견뢰한 염료를 얻고자 반응염료의 현황과 문제점을 정리해 보고자 한다.

  • PDF

Effect of Ultrasound on the Acid Hydrolysis of Inulin (Inulin의 산 가수분해 반응에서 초음파가 미치는 영향)

  • 김성배;윤석준
    • KSBB Journal
    • /
    • v.8 no.4
    • /
    • pp.358-363
    • /
    • 1993
  • The effect of ultrasound on the acid hydrolysis of inulin was studied under significantly mild reaction conditions, at which sugar degradation products were not detected. Reaction conditions were i the range of 50~$60^{\circ}C$ and 0.1~0.3%(w/w) of HCl concentrations. The effects of reactor position inside water bath and mechanical agitation under ultrasound were investigated. The production rates of fructose with/without ultrasound irradiation were compared. The activation energies for both control and ultrasound reaction were the same, i. e., 25kca1/mo1, and ultrasound enhancement was average 22%.

  • PDF

Kinetics and Mechanism of the Hydrolysis of Phenylvinylsulfone (Phenylvinylsulfone의 가수분해 반응메카니즘과 그의 반응속도론적 연구)

  • Kim, Tae Rin;Choi Choon-Chuel
    • Journal of the Korean Chemical Society
    • /
    • v.19 no.2
    • /
    • pp.123-129
    • /
    • 1975
  • The rate constants of the hydrolysis of phenylvinylsulfone were determined by ultraviolet spectrophotometry at various pH and a rate equation which can be applied over wide pH range was obtained. The reaction mechanism of hydrolysis of phenylvinylsulfone and especially the catalytic contribution of hydroxide ion which did not study carefully before in acidic media, can be fully explained by the rate equation obtained. The rate equation reveals that: below pH 7, the reaction is initiated by the addition of water molecule to phenylvinylsulfone. At above pH 9, the overall rate constant is only dependent upon the concentration of hydroxide ion.

  • PDF

Conversion of Penicillin to Cephalosporin. The Iodination of Thiazoline-azetidinone in the Presence of Water (페니실린에서 세파로스포린으로의 전환. 물 존재하에서 티아졸린-아제티디논의 요오드화 반응)

  • Choe, In Yeong;Jeong, Gyu Hyeon;Lee, Yun Yeong;Gu, Yang Mo
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.102-107
    • /
    • 1990
  • The reaction of thiazoline-azetidinone (7) with $I_2$ in $CH_2Cl_2-H_2O$ gave directly 3-iodo-3-methylcepham (4). A phase transfer catalyst considerably increased the reaction rate. Similar to the hydrolysis of thiazoline-azetidinone (7) under a weak acidic condition, thiazole (10) was given as major product in the treatment with 0.1 eq. of iodine. The difference between cyclization reaction and hydrolysis could be explained in terms of solvents, the amount of iodine and the nature of thiazoline-azetidinones (7).

  • PDF

Studies on Potato Glycoalkaloid Determination by Acid-hydrolysis Method (산 가수분해 방법에 의한 감자 glycoalkaloid성분의 정량성 검토)

  • Yoon, Kyung-Soon;Byun, Gwang-In
    • Journal of the Korean Society of Food Culture
    • /
    • v.24 no.1
    • /
    • pp.84-89
    • /
    • 2009
  • This paper was conducted to evaluate aglycones and carbohydrates produced by acid hydrolysis of three potato glycoalkaloids [(PGA); ${\alpha}$-chaconine, ${\alpha}$-solanine, and demissine] in potatoes. Standard solanidine and demissidine were dissolved in 1N HCl and then heated at $100^{\circ}C$ for 10-120 min. Solanidine was rapidly decomposed during acid hydrolysis and one peak that was identified as solantherene ($M^+$=379) by GC-MS was detected. The transformation solanidine to solanthrene was approximately 50% complete after 10 min, approximately 90% complete after 60 min and 100% complete after 120 min. Demissidine was hydrolyzed using the same method that was used to hydrolyze the solanidine. However, demissidine produced only one peak upon GC-MS ($M^+$=399) analysis and was found to be very stable at increased temperatures. Acidy hydrolysis of ${\alpha}$-chaconine, ${\alpha}$-solanine and demissine resulted in the decomposition of ${\alpha}$-chaconine and ${\alpha}$-solanine to solanidine and solanthrene, respectively. Therefore, this hydrolysis method should not be utilized to produce PGA combining with solanidine as aglycone. The individual carbohydrates produced by the two PGAs by hydrolysis were very stable at increased temperatures; therefore, it was possible to quantify these PGAs based on calculation of the individual carbohydrate content. Conversely, because demissidine produced by the hydrolysis of demissine was extremely stable at increased temperatures, it was possible to quantify the PGA based on the aglycone produced by hydrolysis.

Determination of Hydrolysis Rate Constants on Phosphamidon and Profenofos (Phosphamidon과 Profenofos의 가수분해속도 상수의 측정)

  • Min, Kyung-Jin;Ha, Young-Duck;Seo, Seol;Cha, Chun-Geun;Park, Jang-Woo;Lee, Seung-Gon
    • Journal of Food Hygiene and Safety
    • /
    • v.15 no.2
    • /
    • pp.144-150
    • /
    • 2000
  • The present study was peformed to determine the hydrolysis rate constants and degradation products of phosphamidon and proffnofos by the OECD method. Hydrolysis rate constants of phosphamidon in pH 4, pH 7, and pH 9 buffer solutions at 25 and 40$^{\circ}$C were 0.0020, 0.0022, 0.0049 and 0.0040, 0.0050, 0.0150, respectively. Hydrolysis rate of phosphamidon was accelerated by temprerature change under same pH conditions, and half-life of phosphamidon in pH 9 at 40。C was 3 times faster than that at 25。C. Hydrolysis rate of phosphamidon in alkaline solution(pH 9) was 2~4 times faster than that in acidic solution(pH 4) and neutral solution(pH 7) under same temperature. Hydrolysis rate constants of profenofos in pH 4, pH 7, and pH 9 buffer solutions at 25 and 40。C were 0.0022, 0.0047, 0.0860 and 0.0035, 0.0086, 0.1245, respectively. Hydrolysis rate of profenofos was accelerated by temprerature change under same pH conditions. Hydrolysis rate of profenofos in alkaline solution(pH 9) was 15~40 times faster than in acidic solution(pH 4) and neutral solution(pH 7) under same temperature condition, and half-life of profenofos was very fast within 8 hours. The hydrolysis rate of profenofos was faster than that of phosphamidon. In order to identify hydrolysis products, the extracts of degradation products were analyzed by GC/MS. The mass spectra of hydrolysis products of phosphamidon were at m/z 153 and 149, those of the profenofos were at m/z 208 and 240, respectively. The hydrolysis products of phosphamidon were O, O-dimethyl phosphate(DMP) and N, N-diethylchloroacetamide, and those of profenofos were 4-bromo-2-chlorophenol and O-ethyl-S-propyl phosphate.

  • PDF