• Title/Summary/Keyword: 가수분해반응

Search Result 922, Processing Time 0.035 seconds

Influencing Factors on the Hydrolysis of Fructooligosaccharides in Fructooligosaccharides Liquid Mixture (설탕을 원료로 제조된 프락토올리고당 액상 제품에서 프락토올리고당의 가수분해에 영향을 미치는 요인)

  • In, Man-Jin;Kim, Dong-Chung;Chae, Hee-Jeong
    • Applied Biological Chemistry
    • /
    • v.49 no.1
    • /
    • pp.86-89
    • /
    • 2006
  • 설탕을 원료로 제조한 액상 프락토올리고당 제품의 품질 유지기간을 향상시키기위하여 pH, 고형분 농도, 과당 농도가 프락토올리고당(FOS)의 가수분해에 미치는 영향을 조사하였다. 효소 반응액의 pH 6.0 이상과 최종 제품의 고형분 농도 80%에서 FOS의 잔존율이 크게 향상되었다. 또한 과당 농도가 증가할수록 FOS의 잔존율은 감소하였다. 효소 반응액의 pH 6.0, 고형분 농도 80%, 과당 농도 1.1%의 시료를 $60^{\circ}C$에 16 일간 보관한 결과 FOS의 잔존율은 95%로 높게 유지되었다.

Acid Hydrolysis Characteristics of Yellow Poplar for High Concentration of Monosaccharides Production (백합나무를 이용한 고농도 단당류 생산을 위한 산 가수분해 특성 연구)

  • Shin, Soo-Jeong;Park, Jong-Moon;Cho, Dae Haeng;Kim, Yong Hwan;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.578-584
    • /
    • 2009
  • We investigated acid hydrolysis characteristics of yellow poplar woodmeal with concentrated sulfuric acid for high concentration of monosaccharides production. Woodmeal to 72% sulfuric acid ratio (w/w), $2^{nd}$ hydrolysis temperature and time were main variables for finding optimum reaction condition. Optimum woodmeal to 72% sulfuric acid ratio was 1 : 2.61 (w/w) and $2^{nd}$ hydrolysis temperature and time was $105^{\circ}C$ and 40 min as 44.8 g/L of glucose and 25.2 g/L of xylose in hydrolysis solution. In this acid hydrolysis solution, furfural, 5-HMF, low molecular weight phenolic compounds were identified. Furfural and 5-HMF concentration were increased as increasing $2^{nd}$ hydrolysis time. More than 40 min of $2^{nd}$ hydrolysis at $110^{\circ}C$, xylose concentration was decreased but glucose concentration was leveled out because xylose to furfural reaction was faster than xylan to xylose, but cellulose to glucose reaction was similar rate with glucose to 5-HMF at that $2^{nd}$ hydrolysis reaction condition.

A Study on the Proteolysis of Mussel Protein by a Commercial Enzyme Preparation (단백질 분해효소에 의한 홍합 단백질의 분해에 관한 연구)

  • Choi, In-Jae;Nam, Hee-Sop;Shin, Zae-Ik;Lee, Byong-Hoon
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.6
    • /
    • pp.519-523
    • /
    • 1992
  • The patterns on the proteolysis of mussel protein using a commercial enzyme preparation were investigated. The best one among six commercial enzyme preparations for the manufacture of mussel extract was Corolase PP, based on the degree of hydrolysis (DH). When the raw mussel paste, without water addition, was adjusted to pH 6.5, added 0.1% (w/w dry basis) of Corolase PP. and reacted at $50^{\circ}C$ for four hours, it reached the maximum value of DH (79%). The precooking of raw mussel decreased the efficiency of extraction and hydrolysis of the protein, due to the inactivation of the autolytic enzymes contained in the mussel. During the course of proteolysis, major free amino acids such as glycine, alanine, glutamic acid and lysine, representing a characteristic brothy taste of mussel were replaced with free hydrophobic amino acids including valine, methionine, isoleucine, and leucine. The electrophoretic pattern and HPLC-GPC pattern of mussel protein hydrolysates during the hydrolysis were observed and also discussed.

  • PDF

2, 4, 6-Trinitrotoluene(TNT) Treatment by the Alkaline Hydrolysis (가수분해에 의한 2, 4, 6-Trinitrotoluene(TNT) 처리)

  • Kwon, Bumgun;Kim, Jongoh
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.69-74
    • /
    • 2012
  • This study investigated the TNT decomposition by the treatment of alkaline hydrolysis. To obtain this objecitive, spectrum shift characteristics, pH effect, kinetics, and product analysis were examined during the alkaline hydrolysis by means of hydroxide ions. At pH = 12, an aqueous solution of TNT was changed into yellow-brown coloring, in which its absorbances were newly increased in a range of wavelength 400-600 nm. From the kinetic data, pseudo-first-order rate constant in a excess of hydroxide ion, in contrast to TNT concentration, was $0.0022min^{-1}$, which means that the reaction rate between TNT and hydroxide ion can be very slow, and that 1,047 min is necessary to achieve a 90% reduction of the initial TNT. In products analyses, nitrite ions and formic acid were mainly produced by the alkaline hydrolysis, nitrate ions and oxalic acid as minor products were generated.

Kinetics of Base Hydrolysis of Some Chromen-2-one Indicator Dyes in Different Solvents at Different Temperatures (여러 온도 및 용매 하에서 수행된 chromen-2-one 지시약 염료들의 염기성 가수분해 반응에 대한 속도론적 연구)

  • Abu-Gharib, Ezz A.;EL-Khatib, Rafat M.;Nassr, Lobna A.E.;Abu-Dief, Ahmed M.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.346-353
    • /
    • 2011
  • Base hydrolysis of 7-hydroxy-2H-chromen-2-one (HC) and 7-hydroxy-2H-chromen-2-one-4-acetic acid (HCA) in aqueous-methanol and aqueous-acetone mixtures were studied kinetically at temperature range from 283 to 313 K. The activation parameters of the reactions were evaluated and discussed. Moreover, the change in the activation energy barrier of the investigated compounds from water to water-methanol and water-acetone mixtures was estimated from the kinetic data. It is observed that the change in activation barriers is more or less the same for the hydrolysis of HC and HCA. Base hydrolysis of HC and HCA follows a rate law with $k_{obs}=k_2[OH^-]$. The decrease in the rate constants of HC and HCA as the proportion of methanol or acetone increases is due to the destabilization of $OH^-$ ion. The high negative values of entropy of activation support the proposal mechanism, i.e. the investigated reaction takes place via the formation of an intermediate complex. Moreover, these values refer to the rigidity and stability of the intermediate complex. Thus, the ring opening of the intermediate complex would be the rate controlling step.

Development of Optimum Process for Continuous Hydrolysis of Fish Skin Gelatin Using a Three-Step Recycle Membrane Reactor (재순환 3단계 막반응기를 이용한 어피젤라틴의 연속적 가수분해 최적화 공정 개발)

  • Kim, Se-Kwon;Byun, Hee-Guk
    • Applied Chemistry for Engineering
    • /
    • v.5 no.4
    • /
    • pp.681-697
    • /
    • 1994
  • The enzymatic hydrolysate of gelatin extracted from fish skin was fractionated and recycled through the membrane reactor according to the molecular weight for the purpose of using as functional material. In addition, the enzymatic hydrolysis conditions of gelatin, enzyme stability by membrane and mechanical shear, and effect on the long-term operational stability of the recycle membrane reactor were investigated. Using the pH-drop technique, Alcalase, pronase E and collagenase were identified as the most suitable enzymes for the hydrolysis of fish skin gelatin. The optimum hydrolysis conditions in the 1st-step membrane reactor(1st-SMR) by Alcalase were enzyme concentration 0.2mg/ml, substrate-to-enzyme ratio(S/E) 50(w/w), $50^{\circ}C$, pH 8.0, reaction volume 600ml and flow rate 6.14ml/min. In the 2nd-SMR by pronase E were enzyme concentration 0.3mg/ml, S/E 33(w/w), $50^{\circ}C$, pH 8.0, reaction volume 600ml and flow rate 6.14ml/min. In the case of 3rd-SMR, enzyme concentration 0.1mg/ml, S/E 100(w/w), $37^{\circ}C$, pH 7.5, reaction volume 600ml and flow rate 10ml/min. Decreased enzyme activities by mechanical shear and membrane were 30% and 15% in the 1st-SMR, were 14% and 5% in the 2nd-SMR, and 18% and 8% in the 3rd-SMR, respectively. Under the optimum conditions, the degree of hydrolysis in the 1st, 2nd and 3rd-SMR were 3.5%(Kjeldahl method, 87%), 3.1%(77%) and 2.7%(70%), respectively. The productivity of hydrolysate in the continuous three-step membrane reactor was 430mg per enzyme(mg) for 10 times of volume replacements.

  • PDF

The Hydrolysis of Dimethyl-cis-1,3-dibenzyl-2-oxoimidazolidine-4,5-dicarboxylate by Immobilized Whole Cells of Chromobacterium chocolatum (고정화된 Chromobacterium chocolatum의 Whole Cell을 이용한 Dimethyl-cis- 1,3-dibenzyl-2-oxoimidazolidine-4,5-dicarboxylate의 가수분해)

  • Lee, Youn Jin;Shim, Sang Kyun;Ahn, Yong Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.9
    • /
    • pp.483-487
    • /
    • 1997
  • The whole cells of Chromobacterium chocolatum was immobilized in the matrix of polyacrylamide and then used for the hydrolysis of dimethyl-cis-1,3-dibenzyl-2-oxoimidazolidine-4,5-dicarboxylate. This hydrolysis yielded the optically active monoester ( > 96% ee) which is useful as an synthetic intermediate of (+)-biotin. We have studied the optimum condition of hydrolysis by using immobilized cells under variable concentration of substrate, reaction time and pH levels. The activity of lipase in immobilized cell was retained for longer than 4 weeks. The best conversion yield of product was obtained when 2 g of wet cell was immobilized and then reacted with 200 mg of substrate at pH 7.

  • PDF

Development of High Performance Co Catalysts for Hydrogen Generation from Sodium Borohydride Solution (Sodium Borohydride 용액의 수소 발생을 위한 고성능 Co 촉매 개발)

  • 조근우;엄광섭;권혁상
    • 한국전기화학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.341-346
    • /
    • 2005
  • 펄스 도금 조건이 Co 도금층의 미세 구조 및 알칼리 $NaBH_4$ 용액의 수소발생특성에 미치는 영향을 조사하였다. 펄스 주기 및 최대전류밀도가 증가함에 따라 polyhedral 형상의 Co 결정립이 triangular형상으로 변화하였으며, 점차 결정립이 조대화 되어, 촉매 표면적이 감소하였다. 결국 알칼리 $NaBH_4$ 용액 내에서 가수분해반응에 참여하는 촉매 site가 감소하여 수소발생속도가 낮아졌다. 펄스도금시간이 증가함에 따라 Co 결정립의 크기가 점차 증가하여 촉매 표면적이 감소하였고, 가수분해반응에 참여하지 못하는 CO의 양이 증가하여 수소발생속도가 크게 감소하였다. 최대전류밀도 $0.1\;A/cm^2$, 펄스 주기 2 mS에서 10 s 동안 펄스 도금 시, $25^{\circ}C\;1\;wt.\%\;NaOH\;+\;10\;wt.\%\;NaBH_4$ 용액에서 $2140\;ml/min{\cdot}g-catalyst$의 높은 수소발생속도를 가지는 것으로 나타났다.

  • PDF

Hydrolysis of Various Substrates by Two Forms of the Purified Glucoamylase from Rhizopus oryzae (Rhizopus oryzae로 부터 정제(精製)한 두가지형의 Glucoamylase의 각종기질(各種基質)의 가수분해(加水分解))

  • Hou, Won-Nyong;Chung, Man-Jae
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.398-402
    • /
    • 1984
  • These experiments were conducted to investigate the substrate specificity, the hydrolysis products on the various carbohydrates and the hydrolysis rate on the various raw starches of the two purified glucoamylase produced by Rhizopus oryzae. Both of the glucoamylases hydrolyzed amylose, amylopectin, glycogen, soluble starch, pullulan, maltose, maltotriose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose and maltooctaose, but did not act on ${\alpha}-cyclodextrin$, ${\beta}-cyclodextrin$, raffinose, sucrose and lactose. When the reaction mixture of glucoamylase and polysaccharides were incubated $37^{\circ}C$for 32 hours, glucoamylase I hydrolyzed amylopectin, soluble starch and amyloses completely, but hydrolyzing glycogen up to only about 88%. Glucoamylase II hydrolyzed the previous four polysaccharides up to about 100%. Both of the glucoamylases produced only glucose for various substrates and did not have any ${\alpha}-glucosyl$ transferase activity. Both of the glucoamylases hydrolyzed raw glutinous rice starch almost complety, wheras they acted on raw potato starch, raw green banana starch, raw arrow root starch, raw corn starch, raw yam starch and raw high amylose corn starch weakly. Glucoamylase II hydrolyzed raw starches at the higher rate than glucoamylase I.

  • PDF

Study on Proteolysis of Glucagon .3-Interleukin-2 {G.3-IL-2} Using Enterokinase (Enterokinase에 의한 Glucagon.3-Interleukin-2 {G.3-IL-2} 의 단백질 분해 연구)

  • 이운영;이지원;김인호
    • KSBB Journal
    • /
    • v.15 no.3
    • /
    • pp.238-242
    • /
    • 2000
  • A fusion protein of human interleukin-2(hiL-2) and glucagon which was expressed in Escherichia coli. was digested with enterokinase for recovery of hIL-2 from the fused protein. To obtain hIL-2 of optimum recovery hydrolysis reaction were performed under various conditions of urea additives and reaction time. hIL-2 was finally purified by RP-HPLC(reversed phase-HPLC) to remove cleaved G3 fusion partner and residual uncleaved G3-IL-2 HIL-2 was eluted in a single peak at 100% acetonitrile at 28 min. Optimum urea concentration was found to be 0.5 M and 24 h reaction time was sufficient without any additive such as CaCl2 and Tween-20.

  • PDF