• Title/Summary/Keyword: 가솔린 인젝터

Search Result 65, Processing Time 0.025 seconds

Performance Characteristics for the Gasoline Engine Injector (가솔린엔진 인젝터의 분무특성)

  • Lee, Sang-In;Lee, Sung-Won;Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.526-530
    • /
    • 2009
  • 본 연구은 자동차용 가솔린엔진에 장착되는 인젝터의 연료공급 특성에 대한 것으로, 가솔린 엔진의 전자제어식 포트 연료분사는 분무장치와 흡기포트의 최적화 및 분무특성이 우수해야 엔진의 성능 향상 및 배기가스 저감의 목적을 이룰 수 있다. 4홀과 12홀 인젝터의 장착각 변화와 포트 마스킹의 형상변화에 따른 벽유량을 측정?분석하였고 분무가시화 실험을 통하여 분무성장과정과 분사각, 연료미립화 및 분무도달거리를 분석하였다. 벽류측정 실험을 통하여 벽류는 미립화정도와 흡기유동과 유속에 가장 큰 영향을 받는 것으로 판단되며, 12홀 인젝터 대비 4홀 인젝터는 분무압력에 따라 분무특성의 변화량이 크게 나타났다.

  • PDF

Study on the Performance Characteristics for the Gasoline Engine of Hybrid Automotive (하이브리연 자동차용 가솔린엔진 연료공급 특성연구)

  • Lee, Sang-In;Lee, Sung-Won;Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.539-542
    • /
    • 2009
  • 본 연구은 자동차용 가솔린엔진에 장착되는 인젝터의 연료공급 특성에 대한 것으로, 4홀과 12홀 인젝터의 분무질량분포, 벽류 및 가시화 실험을 수행하였다. 분무질량분포 실험을 통하여 인젝터 별 분무특성을 파악하고, 벽류측정실험을 통하여 흡기포트내의 연료 Wetting 특성을 확인하였다. 가시화실험을 통하여 분사각과 분무특성을 비교 분석하였다. 4홀과 12홀 인젝터의 분무특성비교를 통한 각 인젝터의 연료공급 특성분석은 가솔린엔진 설계시 기초자료로 활용될 수 있을 것이다.

  • PDF

Study on the Spray Characteristics for the GDI Injector (고효율 직접분사 가솔린 인젝터의 분무특성 연구)

  • Lee, Sang-In;Park, Sung-Young
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.988-991
    • /
    • 2010
  • 본 연구는 직접 연료분사 가솔린 엔진에 장착되는 고압연료 인젝터의 연료공급 특성에 대한 것으로, 두 종류 GDI 인젝터의 분무가시화 실험을 수행하였고, 분무특성을 분석하였다. 가시화 실험을 통하여 인젝터 끝단 분사 초단부근 연료거동을 확인하였고, 인젝터의 특성인 도달거리와 관통력을 확인하였으며, 분위기 압력의 변화에 따른 분무특성을 고려하여 실험을 수행하였다. 두 인젝터 모두 분위기 압력이 증가함에 따라 도달거리와 분사각이 감소하였다. B type의 인젝터 보다 A type의 인젝터가 분위기 압력에 민감한 것으로 나타났다. 본 연구를 통하여 분위기 압력의 변화에 따른 분무거동의 변화를 확인 하였으며 직접 분사인젝터의 엔진적용을 위한 기초 분무 데이터를 확보하였다.

  • PDF

A Development of Converting Technology for the Marine Gasoline/CNG Bi-fuel Engine (선박용 가솔린/CNG Bi-fuel 엔진개조 기술 개발)

  • Park, Myung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.632-637
    • /
    • 2010
  • Natural gas, a fossil fuel contained mostly of methane, is one of the cleanest alternative fuels. It can be used in the form of compressed gas(CNG) or liquefied natural gas(LNG) to cars and trucks. And, dedicated natural gas vehicles are designed to run on natural gas only, while Bi-fuel vehicles can also run on gasoline or CNG, especially, bi-fuel can be defined as the simultaneous combustion of two fuels. In this study, converted gasoline marine system to CNG Bi-fuel system which is made up of injector, regulator, tank and ECU is converted. And estimated the fuel system and engine power compared the result with gasoline engine is estimated. As a result, CNG engine shows low exhaust emissions but maxium power is 7% reduced compared to gasoline engine.

Combustion Characteristics of Ammonia-Gasoline Dual-Fuel System in a One liter Engine (1리터급 엔진을 이용한 암모니아-가솔린 혼소 성능 특성)

  • Jang, Jinyoung;Woo, Youngmin;Yoon, Hyung Chul;Kim, Jong-Nam;Lee, Youngjae;Kim, Jeonghwan
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.1-7
    • /
    • 2015
  • An ammonia fuel system is developed and applied to a 1 liter gasoline engine to use ammonia as primary fuel. Ammonia is injected separately into the intake manifold in liquid phase while gasoline is also injected as secondary fuel. As ammonia burns 1/6 time slower than gasoline, the spark ignition is needed to be advanced to have better combustion phasing. The test engine showed quite high variation in the power output to lead high increase in THC emission with large amount of ammonia, that is, higher than 0.7 ammonia-gasoline fuel ratios.

Experimental Study on the Wall-Wetting Formation and Spray Characteristics of Gasoline Engine Injector (가솔린엔진 인젝터의 벽류 및 분무특성에 관한 실험적 연구)

  • Lee, Sung-Won;Lee, Sang-In;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.815-820
    • /
    • 2010
  • Fuel spray characteristics of the gasoline engine injector has been studied experimentally. Wall wetting fuel stream of the 4-hole and 12-hole injectors has been tested and measured with various installation angle and port masking shapes. Spray visualization has been performed to analyze spray formation, spray angle, and penetration length. Test result shows that wall wetting is greatly influenced by the induction air flow and injector installation angle. Wall wetting amount decreased as injector installation angle decreased. Masking decreased wall wetting amount by increasing local intake-air flow velocity due to the decreased section area. Spray visualization showed that the 12-hole injector has robust performance characteristics compared with the 4-hole injector.

Experimental Study on Spray Characteristics of Gasoline Direct Injection Multi-hole Injector (가솔린 직접분사용 다공형 인젝터의 분무특성에 관한 실험적 연구)

  • Lee, Sang-In;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2054-2060
    • /
    • 2011
  • The purpose of this paper is to investigate spray characteristics of GDI injector that is economic and environment-friendly. Injector characteristics such as penetration length, spray angle and mixture formation were measured using experimental visualization technique. Especially, it has been analyzed that the influences of ambient pressure and injection pressure on penetration length and spray angle. To visualize the spray, a constant volume combustion chamber and fuel supply system have been manufactured. A high-speed camera and LED light source have been applied to obtain spray images. The experimental and visualization result shows that the penetration length is increased as decreasing ambient pressure and/or increasing injection pressure. Also, ambient pressure and injection pressure have minor effect on the spray angle variation.

Fuel Spray Characteristics of GDI Injector (직분식 가솔린기관 인젝터의 연료 분무 특성)

  • Kwon, Sang-Il;Lee, Chang-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.194-201
    • /
    • 2000
  • This paper is intended to analyze the macroscopic behavior and transient atomization characteristics of the high-pressure gasoline injector in direct-injection gasoline engine. The global spray behavior of fuel injector was visualized by shadowgraph technique. Time-resolved droplet axial and radial velocity components and droplet diameter were measured at many probe positions in both axial and radial directions by a two-component phase Doppler particle analyzer (PDPA). In order to obtain the influence of fuel injection pressure, the macroscopic visualization and experiment of particle measurement on the fuel spray were investigated at 3,5 and 7 MPa of injection pressure under different surrounding pressure in the spray chamber. The results of this work show that the fuel injection pressure of gasoline injector in GDI engine has influence upon the mean droplet diameter, mean velocity of spray droplet, the spray tip penetration, and spray width under the elevated ambient pressure.

  • PDF

A Numerical Study on the Spray Characteristics of the Swirl-Type Gasoline Direct Injector (스월형 가솔린 직분식 인젝터의 분무특성에 대한 수치적 연구)

  • 이충훈;정수진;김우승;이기형;배재일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.9-21
    • /
    • 2000
  • In this study, the characteristics of high-pressure swirl injector have been studied using a commercial CFD code, STAR-CD and experiment to investigate the effect of the length of orifice and swirl port on the spray characteristics. Influences of swirl port angle and initial conditions have also been examined in terms of penetration depth and Sauter`s mean diameter. Computed results of the spray characteristics are compared with experimental results. The results show that the tangential velocity at the nozzle exit decreases, but the axial velocity increases as swirl port angle is increased. Hence, the static flow rate increases, but the initial spray angle decreases with increasing the swirl port angle. It is also shown that the values of the initial SMD used as input data for spray simulation influences the penetration depth and SMD. The spray pattern from the present numerical simulation agrees well with experimental result.

  • PDF

Effects of Hole Drilling Angle on Internal Flow of Gasoline Direct Injection Injector (Hole drilling angle이 가솔린 직접 분사식 인젝터의 내부 유동에 미치는 영향)

  • Kim, Huijun;Park, Sungwook
    • Journal of ILASS-Korea
    • /
    • v.26 no.4
    • /
    • pp.197-203
    • /
    • 2021
  • In gasoline direct injection injectors, cavitation can be generated inside the hole because of their high injection pressure. In this paper, the effects of cavitation development in injector were investigated depending on the various hole drilling angles were investigated by a numerical method. In order to verify the internal flow model, injection rate and injection quantity of individual holes were measured. The BOSCH long tube method was used to measure the injection rate. As a result, even if the hole diameters were the same, the discharge coefficient differed by up to 10% depending on the hole angle. Moreover, if the hole drilling angle became greater than 30°, the area coefficient and the discharge coefficient decreased as the nozzle outlet was blocked due to cavitation.