• Title/Summary/Keyword: 가속도 앞먹임제어

Search Result 4, Processing Time 0.017 seconds

Optimal Acceleration Feedforward Control of Active Magnetic Bearing Systems Subject To Base Motion (베이스 운동을 받는 능동자기베어링계의 가속도 최적 앞먹임 제어)

  • 강민식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.9
    • /
    • pp.84-91
    • /
    • 2003
  • This paper concerns on one-DOF non-rotating active magnetic bearing (AMB) system subject to base motion. In such a system, it is desirable to retain the axis within the predetermined air-gap while the base motion forces the axis to deviate from the desired air-gap. Motivated from this, an optimal acceleration feedforward control is proposed to reduce the base motion response without deteriorating other feedback control performances. Experimental results demonstrate that the proposed optimal feedforward control reduces the standard deviation of the air-gap to 29% that by feedback control alone.

Base Acceleration Feedforward Control for an Active Magnetic Bearing System Subject to Base Motion (베이스 가진을 받는 전자기 베어링계의 베이스 가속도 앞먹임 제어)

  • Kang, Min-Sig
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1028-1033
    • /
    • 2002
  • This paper concerns on a non-rotating axis-active magnetic bearing (AMB) system subject to base motion. In such a system, it is desirable to retain the axis within the predetermined air-gap. Motivated from this, an optimal acceleration feedforward control is proposed to reduce the base motion response without deteriorating other feedback control performances. Experimental results demonstrate that the proposed feedforward control reduces the air-gap deviation to 29% that by feedback control alone.

  • PDF

Acceleration Feedforward Control in Active Magnetic Bearing System Subject to Base Motion by Filtered-x LMS Algorithm (베이스 가진을 받는 능동자기베어링 시스템에서 Filtered-x LMS 알고리듬을 이용한 가속도 앞먹임 제어)

  • Kang, Min-Sig
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1712-1719
    • /
    • 2003
  • This paper concerns on application of active magnetic bearing(AMB) system to levitate the elevation axis of an electro-optical sight mounted on moving vehicles. In such a system, it is desirable to retain the elevation axis within the predetermined air-gap while the vehicle is moving. An optimal base acceleration feedforward control is proposed to reduce the base motion response. In the consideration of the uncertainty of the system model, a filtered-x least-mean-square(FXLMS) algorithm is used to estimate the frequency response function of the feedforward control which cancels base motions. The frequency response function is fitted to an optimal feedforward control. Experimental results demonstrate that the proposed control reduces the air-gap deviation to 27.7% that by feedback control alone.

Disturbance Compensation Control Design far 2-DOF Gun Stabilization System with Gear Stiffness by Using FXLMS Algorithm (기어강성을 갖는 2-자유도 포신 안정화시스템에서 FXLMS 알고리즘을 이용한 외란 보상 제어기 설계)

  • Lim, Jae-Keun;Kang, Min-Sig
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.488-493
    • /
    • 2005
  • In gun stabilization systems, the torque comes from the unbalance mass of gun and the base acceleration is an important source of disturbance which degrades stabilization performance. Fatigue of gear train is another important factor affecting structural safety problems. In this paper, a feedback control gain is designed by optimal control weighting to difference between motor and gun velocity, and a feedforward controller using FXLMS algorithm is adopted to investigate those problems. Experimental results show that the feedforward compensator based on FXLMS can reduce the disturbance effects. The directional convergence property according to initial conditions of the FXLMS is also shown through experiments.

  • PDF