• Title/Summary/Keyword: 가속도계 위치

Search Result 80, Processing Time 0.024 seconds

One-dimensional Positioning using Iterative Linear Regression Based on Received Signal Strength and Mobility Information (반복선형회귀를 이용한 수신 신호 세기와 이동성 정보에 기반한 1차원 위치 추정)

  • Lee, Dong-Jun;Kim, Da-Yeong;Lee, Eun-Hye
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.128-133
    • /
    • 2020
  • In this study, an 1-dimensional positioning method using iterative linear regression for path loss expression is proposed. In the proposed method, received signal strengths (RSS) measured in several locations and distances between the measuring locat ions obtained by dead reckoning are used to derive a linear regression for the path loss from the transmitting beacon. In the proposed method, for the distance between the transmitting beacon and a target measuring location, several tentative values are assumed. For each tentative value, a linear regression is obtained. Among the linear regression expressions, the one closest to the known reference RSS value is selected and used to derive the distance to the target location. Test results show that the proposed method is more accurate than path loss model.

Development of Wave Monitoring System using Precise Point Positioning (PPP 기반 항법 알고리즘을 이용한 파고 계측시스템 설계 및 구현)

  • Song, Se Phil;Cho, Deuk Jae;Park, Sul Gee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1055-1062
    • /
    • 2015
  • A GPS based wave height meter system is proposed in this paper. The proposed system uses a dual-frequency measurements, a precise GPS satellite information and a PPP-based navigation algorithm to estimate the position with high accuracy. This method does not need to receive corrections from the reference stations. Therefore, unlike RTK based wave meter, regardless of the distance to the reference stations, it is possible to estimate position with high accuracy. This system is very simple and accurate system, but accelerometer-based system requires the other sensors such as GPS. Because position error is accumulated in the accelerometer system and must be removed periodically for high accuracy. In order to get the measurements and test the proposed wave height meter system, a buoy equipped with the test platform is installed on the sea near by Jukbyeon habor in Uljin, Korea. Then, to evaluate the performance, compares built-in commercial wave height meter with proposed system.

Implementation of Sluice Valve management systems using GPS and AR (GPS와 증강현실을 이용한 제수변 관리시스템 구현)

  • Kim, Hwa-Seon;Kim, Chang-Young;Lee, Imgeun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.151-156
    • /
    • 2017
  • In case of massive water leakage, it's crucial for field manager to quickly positioning the problematic valve and related ones. However, it's not easy for the system to find the corresponding valve and even if it's found, it can not respond quickly because it can't know the relevant information immediately. In this paper, we implement the system for identifying sluice valve positions using GPS and AR techniques. The proposed system is composed of hand held android device, remote database server and data acquisition device for DB creation. We utilize the android device's sensors including GPS, gyro, accelerometer, magnetic sensor. The system identifies the valve with matching between the position data from the remote database server, and current GPS locations of device. We use AR techniques to overlay the graphics pattern of valve positions and some additional informations on captured real scene. With this system, it will be fast and accurate for maintenance of sluice valve of municipal water system.

A Numerical Study to Estimate the Lateral Responses of Steel Moment Frames Using Strain Data (변형률 데이터를 이용한 철골모멘트골조의 횡응답 예측을 위한 해석적 연구)

  • Kim, Si-Jun;Choi, Se-Woon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.6
    • /
    • pp.113-119
    • /
    • 2016
  • In this study, the method to predict the lateral response by using strain data is presented on the steel moment frame. For this, the reliability of the proposed method by applying the example of five-story frame structure were verified. Using the strain value of columns, it predicted the lateral response of structure. It is assumed that all of four strain sensors for one column set up and the strain responses of both end of the column are utilized. The lateral response of member is calculated by using the slope deflection method. Also, using the acceleration response of the one layer, the stiffness of the rotation spring located in the supporting point is predicted. As a result, it was effective to understand the lateral displacement and acceleration responses and to predict local damage and location.

Proposal of Acceleration Time History Prediction Method Based on Seismic Observation Data (관측 자료를 활용한 지진가속도 시간이력 추정방법 제안)

  • Lee, Kyeong-Seok;Ahn, Jin-Hee;Park, Jae-Bong;Choi, Hyoung-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.15-22
    • /
    • 2020
  • In this paper, seismic ground motion generation method based on the observbation data from the Korea Meteorological Administration is proposed to predict the acceleration time history at an arbitrary location after earthquake. The proposed method assumes that the magnitude of the seismic accelrations obtained from the near stations decreases linearly with the distance from the epicenter to the corresponding station and the accelerations measured at the adjacent stations are assumed to have similar maximum acceleration and time shape functions. These two assumptions allow for the prediction of seismic acceleartion motion without geotechnical information where no seismic accelerometer is installed. This study verified the applicability of the prediction method using seismic observation data from Gyeongju Earthquake (2016), Pohang Earthquake (2017) and Sangju Earthuqkae (2019). The comparison results show that the proposed method is effective for predicting the seismic acceleration response spectrum and time history at arbitary locations.

Localization Performance Improvement for Mobile Robot using Multiple Sensors in Slope Road (경사도로에서 다중 센서를 이용한 이동로봇의 위치추정 성능 개선)

  • Kim, Ji-Yong;Lee, Ji-Hong;Byun, Jae-Min;Kim, Sung-Hun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.1
    • /
    • pp.67-75
    • /
    • 2010
  • This paper presents localization algorithm for mobile robot in outdoor environment. Outdoor environment includes the uncertainty on the ground. Magnetic sensor or IMU(Inertial Measurement Unit) has been used to estimate robot's heading angle. Two sensor is unavailable because mobile robot is electric car affected by magnetic field. Heading angle estimation algorithm for mobile robot is implemented using gyro sensor module consisting of 1-axis gyro sensors. Localization algorithm applied Extended Kalman filter that utilized GPS and encoder, gyro sensor module. Experiment results show that proposed localization algorithm improve considerably localization performance of mobile robots.

Design of Navigation Filter for Underwater Glider (수중글라이더용 항법필터 설계)

  • Yoo, Tae Suk;Cha, Ae Ri;Park, Ho Gyu;Kim, Moon Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.12
    • /
    • pp.1890-1897
    • /
    • 2022
  • In this paper, we design a navigation filter for an underwater glider. Underwater gliders are low-cost, reusable, and can be used for a long time. Two types of filters are designed considering characteristics such as small size, low cost, and low power. The navigation filter estimates the reference velocity of the underwater glider's body frame based on the minimum sensor output. The sensor configuration of the first filter consists of an accelerometer, a magnetometer, and a depth sensor. the second filter include extra a gyroscope in the same configuration. The estimated velocity is fused with the attitude, converted into the velocity of the navigation frame and finally the position is estimated. To analyze the performance of the proposed filter, analysis was performed using Monte Carlo numerical analysis method, and the results were analyzed with standard deviation (1σ). Standard deviations of each filter's position error are 334.34m, 125.91m.

A Study on Analysis Method for Roller Compaction Work (다짐공사에 대한 롤러의 효율적 품질관리 방안 연구)

  • Lee, Soo Min;Lee, Seung Soo;Yu, Sang Hoon;Seo, Jong Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.621-627
    • /
    • 2017
  • In this study, GPS (Global Positioning System) is applied to rollers for quality control problems caused by empirical judgment of compaction construction. In addition, database and 3D modeling of location information can eliminate unnecessary compaction or excessive compaction, thereby improving quality and shortening the time. This paper presents a methodology of ICMV (Intelligent Compaction Measurement Values) analysis by designing a intelligent compaction method using an accelerometer. Detailed method of ICMV analysis includes CMV (Compaction Meter Value) analysis which can quickly and conveniently evaluate the compaction of the compacted ground.

Error analysis for a strapdown inertial navigation system (스트랩다운 관성항법장치의 오차해석)

  • 심덕선;박찬국;송유섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.286-289
    • /
    • 1986
  • 항법(navigation)은 기준좌표계에 대한 항체(vehicle)의 위치나 속도를 알아내기 위한 것으로 이를 위한 시스템이 관성항법장치(inertial navigation system-INS)이며 항법기능을 수행하기 위하여 항체에 놓여진 쎈서의 관성성질을 이용한다. INS는 specific force와 관성 각속도의 측정에서 얻은 데이타를 처리함으로 그 기능을 수행한다. 스트랩다운 INS(SINS)는 관성항법장치의 한 종류로 analytic INS라고도 하는데 기준좌표축을 유지하기 위하여 안정테이블을 사용하지 않고 쎈서들을 항체에 직접 부착시켜 초기상태와 현재상태와의 사이에 상대적인 회전방향을 해석적으로 계산한다. INS의 성능은 수많은 오차원(error source)의 함수로 주어지며 이 오차원 중에는 주위환경에 의한 것도 있고 INS 구성에 사용된 기구(instruments)와 관련된 것도 있다. INS 를 해석하는 목적은 항법의 정확도를 알아보는데 있으며 또한 각각의 오차원의 값을 추정하는 것도 부가적인 목적이 된다. 이러한 오차의 추정치는 사양(specification)을 모르는 부품의 성능을 식별하는데 사용될 수 있다. 따라서 INS를 해석함으로 INS를 구성하는 어떤 부품에 대한 성능이 어느정도 개선을 필요로 하는가 알 수 있다. 본 논문에서는 SINS의 오차원을 크게 고도계의 불확실성, 중력의 편향과 이상, 가속도계의 불확실성, 자이로의 불확실성의 네 그룹으로 나누어 상호분산해석(covariance analysis)방법으로 각 오차원이 시스템에 미치는 영향을 알아보았다.

  • PDF

Vision Aided Inertial Sensor Bias Compensation for Firing Lane Alignment (사격 차선 정렬을 위한 영상 기반의 관성 센서 편차 보상)

  • Arshad, Awais;Park, Junwoo;Bang, Hyochoong;Kim, Yun-young;Kim, Heesu;Lee, Yongseon;Choi, Sungho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.617-625
    • /
    • 2022
  • This study investigates the use of movable calibration target for gyroscopic and accelerometer bias compensation of inertial measurement units for firing lane alignment. Calibration source is detected with the help of vision sensor and its information in fused with other sensors on launcher for error correction. An algorithm is proposed and tested in simulation. It has been shown that it is possible to compensate sensor biases in firing launcher in few seconds by accurately estimating the location of calibration target in inertial frame of reference.