• Title/Summary/Keyword: 가상 모의 환자

Search Result 44, Processing Time 0.024 seconds

Ethics for Cloned Human Beings: (<네버렛미고>를 통해본 복제 인간 윤리)

  • Kim, Mihye
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.8
    • /
    • pp.121-129
    • /
    • 2017
  • The evolution of biotechnology is no longer strange to the hypothetical scenario of cloning human genes to make cloned human beings. The characters of are cloned humans made in the laboratory by the 100-year-old life planning. They are cohabited in a school called Hailsham, where they are secretly reared. The purpose of this project is to provide healthy organs to real human patients with incurable diseases. The main characters Cathy, Tommy, and Ruth experience the growth of body and consciousness here during adolescence, and they also know the secret of identity as a clone. As adults, they move to a second residence, Cottage and are ready to begin organ donation. The second stage is also part of a program to provide more genuine-like organs to real patients. Even though they know all the plans that humans have built, they do not resist them and fatefully accept their situation. However, their non-responsiveness is not a declaration of renunciation of life, but a self-sacrificing life extension for another future that is the extension of life through their organ donation. The film emphasizes the fraternity and sacrificial attitudes of the cloned human beings and shows that it is necessary to continue the discussions on cloned human beings from a bio-ethical point of view supported by philosophical reasons.

Evaluation of superficial dose for Postmastectomy using several treatment techniques (유방전절제술을 시행한 환자에서 치료기법에 따른 피부선량 평가)

  • Song, Yong Min;Choi, Ji Min;Kim, Jin Man;Kwon, Dong Yeol;Kim, Jong Sik;Cho, Hyun Sang;Song, Ki Won
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.225-232
    • /
    • 2014
  • Purpose : The purpose of this study was to evaluate the surface and superficial dose for patients requiring postmastectomy radiation therapy(PMRT) with different treatment techniques. Materials and Methods : Computed tomography images were acquired for the phantom(I'mRT, IBA) consisting of tissue equivalent material. Hypothetical chestwall and lung were outlined and modified. Five treatment techniques(Wedged Tangential; WT, 4-field IMRT, 7-field IMRT, TOMO DIRECT, TOMO HELICAL) were evaluated using only 6MV photon beam. GafChromic EBT3 film was used for dose measurements at the surface and superficial dose. Surface dose profiles around the phantom were obtained for each treatment technique. For superficial dose measurements, film were used inside the phantom and analyzed superficial region for depth from 1-6mm. Results : TOMO DIRECT showed the highest surface dose by 47~70% of prescribed dose, while 7-field IMRT showed the lowest by 35~46% of prescribed dose. For the WT, 4-field IMRT and 7-field IMRT, superficial dose were measured over 60%, 70%, and 80% for 1mm, 2mm, and 5mm depth, respectively. In case of TOMO DIRECT and TOMO HELICAL, over 75%, 80%, and 90% of prescribed dose was measured, respectively. Surface and superficial dose range were uniform in overall chestwall for the 7-field IMRT and TOMO HELICAL. In contrast, Because of the dose enhancement effect with oblique incidence, The dose was gradually increased toward the obliquely tangential angle for the WT and TOMO DIRECT. Conclusion : For PMRT, TOMO DIRECT and TOMO HELICAL deliver the higher surface and superficial doses than treatment techniques based linear accelerator. It showed adequate dose(over 75% of prescribed dose) at 1mm depth in skin region.

A Comprehensive Computer Program for Monitor Unit Calculation and Beam Data Management: Independent Verification of Radiation Treatment Planning Systems (방사선치료계획시스템의 독립적 검증을 위한 선량 계산 및 빔데이터 관리 프로그램)

  • Kim, Hee-Jung;Park, Yang-Kyun;Park, Jong-Min;Choi, Chang-Heon;Kim, Jung-In;Lee, Sang-Won;Oh, Heon-Jin;Lim, Chun-Il;Kim, Il-Han;Ye, Sung-Joon
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.231-240
    • /
    • 2008
  • We developed a user-friendly program to independently verify monitor units (MUs) calculated by radiation treatment planning systems (RTPS), as well as to manage beam database in clinic. The off-axis factor, beam hardening effect, inhomogeneity correction, and the different depth correction were incorporated into the program algorithm to improve the accuracy in calculated MUs. A beam database in the program was supposed to use measured data from routine quality assurance (QA) processes for timely update. To enhance user's convenience, a graphic user interface (GUI) was developed by using Visual Basic for Application. In order to evaluate the accuracy of the program for various treatment conditions, the MU comparisons were made for 213 cases of phantom and for 108 cases of 17 patients treated by 3D conformal radiation therapy. The MUs calculated by the program and calculated by the RTPS showed a fair agreement within ${\pm}3%$ for the phantom and ${\pm}5%$ for the patient, except for the cases of extreme inhomogeneity. By using Visual Basic for Application and Microsoft Excel worksheet interface, the program can automatically generate beam data book for clinical reference and the comparison template for the beam data management. The program developed in this study can be used to verify the accuracy of RTPS for various treatment conditions and thus can be used as a tool of routine RTPS QA, as well as independent MU checks. In addition, its beam database management interface can update beam data periodically and thus can be used to monitor multiple beam databases efficiently.

  • PDF

Visualization and Localization of Fusion Image Using VRML for Three-dimensional Modeling of Epileptic Seizure Focus (VRML을 이용한 융합 영상에서 간질환자 발작 진원지의 3차원적 가시화와 위치 측정 구현)

  • 이상호;김동현;유선국;정해조;윤미진;손혜경;강원석;이종두;김희중
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.34-42
    • /
    • 2003
  • In medical imaging, three-dimensional (3D) display using Virtual Reality Modeling Language (VRML) as a portable file format can give intuitive information more efficiently on the World Wide Web (WWW). The web-based 3D visualization of functional images combined with anatomical images has not studied much in systematic ways. The goal of this study was to achieve a simultaneous observation of 3D anatomic and functional models with planar images on the WWW, providing their locational information in 3D space with a measuring implement using VRML. MRI and ictal-interictal SPECT images were obtained from one epileptic patient. Subtraction ictal SPECT co-registered to MRI (SISCOM) was performed to improve identification of a seizure focus. SISCOM image volumes were held by thresholds above one standard deviation (1-SD) and two standard deviations (2-SD). SISCOM foci and boundaries of gray matter, white matter, and cerebrospinal fluid (CSF) in the MRI volume were segmented and rendered to VRML polygonal surfaces by marching cube algorithm. Line profiles of x and y-axis that represent real lengths on an image were acquired and their maximum lengths were the same as 211.67 mm. The real size vs. the rendered VRML surface size was approximately the ratio of 1 to 605.9. A VRML measuring tool was made and merged with previous VRML surfaces. User interface tools were embedded with Java Script routines to display MRI planar images as cross sections of 3D surface models and to set transparencies of 3D surface models. When transparencies of 3D surface models were properly controlled, a fused display of the brain geometry with 3D distributions of focal activated regions provided intuitively spatial correlations among three 3D surface models. The epileptic seizure focus was in the right temporal lobe of the brain. The real position of the seizure focus could be verified by the VRML measuring tool and the anatomy corresponding to the seizure focus could be confirmed by MRI planar images crossing 3D surface models. The VRML application developed in this study may have several advantages. Firstly, 3D fused display and control of anatomic and functional image were achieved on the m. Secondly, the vector analysis of a 3D surface model was defined by the VRML measuring tool based on the real size. Finally, the anatomy corresponding to the seizure focus was intuitively detected by correlations with MRI images. Our web based visualization of 3-D fusion image and its localization will be a help to online research and education in diagnostic radiology, therapeutic radiology, and surgery applications.

  • PDF