• Title/Summary/Keyword: 가상내구시험

Search Result 13, Processing Time 0.021 seconds

Analysis of Durability of Vehicle Chassis Part in Virtual Test Lab (가상내구시험을 통한 차량 샤시 부품 내구성 예측에 관한 연구)

  • Cho, ByungKwan;Ha, Jungho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.747-752
    • /
    • 2013
  • Recently, virtual test laboratory techniques have been widely used to reduce vehicle development costs and time. In this study, a virtual durability test process using multibody dynamics simulation and fatigue simulation is proposed. The flexible multibody model of the front half of a car suspension is solved using road loads that are measured from durability test courses such as a Belgian road. To verify the simulation results, the measured loads of components and simulation results are collated.

Virtual Durability Test Procedures and Applications on Design of a Vehicle Suspension Module (자동차 현가모듈의 내구설계를 위한 가상 내구시험기법 정립 및 응용)

  • 손성효;허승진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.144-150
    • /
    • 2003
  • Recently, the virtual test techniques using computer simulation play an important part in the vehicle development procedures in order to reduce the development time and cost by replacing the physical prototypes of the vehicle components or systems with the virtual prototypes. In this paper, virtual durability test procedures for the vehicle suspension module have been developed. Virtual durability test consists of dynamic simulation computing load history of suspension components, fatigue analysis computing the life of components. A vehicle suspension module for dynamic simulation are developed and validated by comparison with the measured data obtained from the field vehicle test. And on the basis of the validated vehicle suspension model, fatigue analysis has been performed for the virtual durability design of the suspension components.

Durability Performance Evaluation of an Aluminum Knuckle using Virtual Testing Method (가상시험법을 이용한 알루미늄 너클의 내구수명 평가)

  • Ko, Han-Young;Choi, Gyoo-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.44-50
    • /
    • 2010
  • Durability performance evaluation technology using Virtual Testing Method is a new concept of a vehicle design, which can reduce the automotive components design period and cost. In this paper, the fatigue life of an aluminum knuckle of a passenger car is evaluated using virtual testing method. The flexible multibody dynamic model of a front half car module is generated and solved with service loads which are measured from Belgian roads. Using a multibody dynamic analysis software, the flexible multibody dynamic simulation of a half car model is carried out and the dynamic stress profile of an aluminum knuckle is acquired. The stress profile is exported to a fatigue analysis software and durability performance of an aluminum knuckle is evaluated.

Durability Design of a Passenger Car Front Aluminum Sub-frame using Virtual Testing Method (가상시험기법을 이용한 승용차 전륜 알루미늄 서브프레임 내구설계)

  • Nam, Jin-Suk;Shin, Hang-Woo;Choi, Gyoo-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.368-375
    • /
    • 2012
  • Durability performance evaluation of automotive components is very important and time consuming task. In this paper, to reduce vehicle component development time and cost virtual testing simulation technology is used to evaluate durability performance of a passenger car front aluminum sub-frame. Multibody dynamics based vehicle model and virtual test simulation model of a half car road simulator are validated by comparisons between rig test results and simulation results. Durability life prediction of the sub-frame is carried out using the model with road load data of proving ground which can evaluate accelerated durability life. We found that the durability performance of the sub-frame is sufficient and it can be predicted within short time compared to rig test time.

Virtual Fatigue Analysis of a Small-sized Military Truck Considering Actual Driving Modes (실 주행조건을 고려한 군용 소형트럭의 가상 내구해석)

  • Suh, Kwon-Hee;Lim, Hyeon-Bin;Song, Bu-Geun;Ahn, Chang-Soon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.120-127
    • /
    • 2008
  • A military vehicle undergoes normal to extreme driving conditions, which consequently induce the fatigue and fracture of cabin and frame. So, it is important to estimate the fatigue life of two components at an initial design stage. In this paper, Modal Superposition Method(MSM) was applied to evaluate the durability performance of a small-sized military truck. For reliable durability analysis, a Virtual Test Lab(VTL) Model was established by correlation with experimental results. These data were extracted from actual driving test, modal test, and SPMD(Suspension Parameter Measuring Device) test. This process shows that Virtual Fatigue Analysis can be a useful approach in the development of military vehicles as well as commercial vehicles.

The Durability Performance Evaluation of Automotive Components in the Virtual Testing Laboratory (차량 부품의 내구성 평가를 위한 가상시험실 구축)

  • Kim, Gi-Hoon;Kang, Woo-Jong;Kim, Dae-Sung;Ko, Woong-Hee;Lim, Jae-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.68-74
    • /
    • 2006
  • The evaluation of durability performance in Virtual Testing Laboratory(VTL) is a new concept of vehicle design, which can reduce the automotive design period and cost. In this study, the multibody dynamics model of a car is built with a reverse engineering design. Hard points and masses of components are measured by a surface scanning device and imported into CAD system. In order to simulate the non-linear dynamic behavior of force elements such as dampers and bushes, components and materials are tested with specialized test equipments. An optimized numerical model for the damping behavior is used and the hysteresis of bush rubber is considered in the simulation. Loads of components are calculated in VTL and used in the evaluation of durability performance. In order to verify simulation results, loads of components in the vehicle are measured and durability tests are performed.

Analysis and Visualization on Aging Effects for Dan-Cheong Pigments (단청안료의 열화 현상 분석 및 가시화 방안)

  • Shin, D.K.;Kim, J.W.;Ahn, E.Y.
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.312-313
    • /
    • 2012
  • 단청의 열화현상에 대한 연구는 주로 건축재로서의 내구성 향상에 초점을 두고 연구가 진행되고 있으나 본 연구는 가상유적지 재현을 위해 가상 건축물의 사실감을 높이기 위한 방안으로서 열화현상을 분석하고 가시화 하는데 초점을 두었다. 이를 위해 먼저, 전통건축에 나타나는 단청의 열화과정을 인간이 인지하는 색채감의 변화에 초점을 두고 연구를 진행한다. 우리나라 단청에서 사용된 안료를 살펴보고 문화재관리청에서 선정한 무기안료와 유기안료를 중심으로 내후성 시험을 통해 안료의 열화현상을 분석한다. 단청의 열화를 크게 색변과 박리 현상으로 나누어 촉진내후성시험기를 통해 얻어진 결과를 토대로 목조 전통건축의 열화현상을 분석한다.

  • PDF

A Study on Image Analysis for Determination of Wear Area in Accelerated Durability Test (가속내구시험 마모영역 판별에 대한 이미지 분석 연구)

  • Cheon, Min-Woo;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.38 no.4
    • /
    • pp.128-135
    • /
    • 2022
  • In the product development process, the reliability of the product can be secured through durability tests. However, since the durability test method is expensive and time consuming, a method to save time and money by utilizing virtual product development (VPD) is required. However, research on the accuracy of the results of virtual product development is required. In this paper, an accelerated durability test was designed and conducted using a planetary gear decelerator. And an analysis model under the same conditions was created and simulated. To correlate the results of the experiment with the results of the analytical model, created a model that can discriminate the wear region using one of the data mining methods, the k-means algorithm method and HSV (Hue, Saturation, Value). The wear area is compared by counting the number of pixels defined as wear through a discrimination model. A similar ratio was calculated by comparing the pixel ratio of the area determined as wear in the entire area. It showed a similar ratio of about 70%, and it is necessary to improve the discrimination method.

Durability Analysis of a Large-sized Military Truck Using Virtual Test Lab (가상 시험 모델을 이용한 군용 대형트럭의 내구해석)

  • Suh, Kwon-Hee;Song, Bu-Geun;Lim, Hyeon-Vin;Chang, Hun-Sub;Oh, Cheol-Jo;Yoo, Woong-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.57-64
    • /
    • 2011
  • In general, the durability performance of a large-sized military truck has been checked through a field durability test which required many man-hours and costs. To reduce these expenses, the durability analysis using a VTL(Virtual Test Lab) at an initial design stage was introduced recently. In this paper, the VTL with a multi-post testrig template for a large-sized truck was developed to compute the load histories transferred to cabin and chassis frame. The VTL consisted of trimmed FE models of cabin, chassis frame, and deck, dynamic models of front and rear suspensions, and a 8-post testrig template. The basic characteristics of the VTL were correlated with experimental results which had been extracted from actual driving test, modal test, and static weight test. The fatigue analysis using MSM(Modal Superposition Method) was applied to evaluate the durability performance of a large-sized military truck. From a series of analytic methods, it is shown that the fatigue analysis process using the VTL could be a useful tool to estimate the fatigue lives and weak areas of a large-sized military truck.

Tearing Test for Automotive Vibroisolating Rubber and Formulation of Tearing Energy (자동차용 방진고무의 찢김시험 및 찢김에너지 정식화)

  • Moon, Hyung-Il;Kim, Heon Young;Kim, Min Gun;Kim, Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1669-1674
    • /
    • 2012
  • A commonly analytical estimation of fatigue life on rubber components is using fatigue life equation based on various fatigue test results. However, such method has very restricted applicability in actual designing processes because performing fatigue tests requires a lot of time and money. In addition, non-standard rubber materials and their randomness make it hard to make databases. In this paper, the other fatigue life estimation method using tearing energy was suggested. We performed static and dynamic tearing test about automotive vibration rubber materials and a finite element formulation using a virtual crack to calculate the tearing energy of rubber components with complicated shapes. To using the suggested method, fatigue life of an automotive motor mount has been estimated and verified the reliability of this method by using comparison between the estimated values and the actual fatigue life.