DOI QR코드

DOI QR Code

Tearing Test for Automotive Vibroisolating Rubber and Formulation of Tearing Energy

자동차용 방진고무의 찢김시험 및 찢김에너지 정식화

  • Moon, Hyung-Il (CAE team, Hyundai Mobis) ;
  • Kim, Heon Young (Dept. of Mechanical and Biomedical Engineering, Kangwon National Univ.) ;
  • Kim, Min Gun (Dept. of Mechanical and Biomedical Engineering, Kangwon National Univ.) ;
  • Kim, Ho (Korea Production Technology Center, Korea Institute of Industrial Technology)
  • 문형일 (현대모비스 공학해석팀) ;
  • 김헌영 (강원대학교 기계의용공학과) ;
  • 김민건 (강원대학교 기계의용공학과) ;
  • 김호 (송도테크노파크)
  • Received : 2012.05.22
  • Accepted : 2012.10.17
  • Published : 2012.12.01

Abstract

A commonly analytical estimation of fatigue life on rubber components is using fatigue life equation based on various fatigue test results. However, such method has very restricted applicability in actual designing processes because performing fatigue tests requires a lot of time and money. In addition, non-standard rubber materials and their randomness make it hard to make databases. In this paper, the other fatigue life estimation method using tearing energy was suggested. We performed static and dynamic tearing test about automotive vibration rubber materials and a finite element formulation using a virtual crack to calculate the tearing energy of rubber components with complicated shapes. To using the suggested method, fatigue life of an automotive motor mount has been estimated and verified the reliability of this method by using comparison between the estimated values and the actual fatigue life.

일반적인 고무 부품의 해석적 피로 수명 예측은 다양한 피로시험 결과를 바탕으로 정의되는 피로 수명식이 사용된다. 그러나, 이와 같은 방식은 피로 시험에 사용되는 비용적, 시간적인 문제로 인해 설계과정에서 매우 제한적으로 사용된다. 더욱이, 고무재료의 비규격화 및 임의적인 특성변화가 피로시험 결과의 데이터베이스화를 어렵게 만든다. 본 논문에서는 찢김에너지를 이용한 또다른 피로수명 예측 방식을 제안하였다. 자동차용 방진고무들에 대한 동적, 정적 찢김시험 및 복잡한 형상을 갖는 고무 부품의 찢김에너지를 계산하기 위하여 가상 결함을 고려한 유한요소 정식화를 수행하였다. 제안된 방법을 사용하여, 자동차용 모터 마운트의 피로 수명을 예측해 보았고, 실제 수명과 예측된 수명을 비교하여 신뢰성을 검증해 보았다.

Keywords

References

  1. Mars, W. V. and Fatemi, A., 2002, "A Literature Survey on Fatigue Analysis Approaches for Rubber," Int. J. of Fatigue, Vol. 24, No. 9, pp. 949-961. https://doi.org/10.1016/S0142-1123(02)00008-7
  2. Verrona, E. and Andriyana, A., 2008, "Definition of a New Predictor for Multiaxial Fatigue Crack Nucleation in Rubber," J. of the Mechanics and Physics of Solids, Vol. 56, No. 2, pp. 417-443. https://doi.org/10.1016/j.jmps.2007.05.019
  3. Oh, H. L., 1980, "A Fatigue-Life Model of a Rubber Bushing," Rubber Chemistry and Technology, Vol. 53, pp.1226-123. https://doi.org/10.5254/1.3535090
  4. Kim, W. D., Lee, H. J., Kim, J. Y. and Koh, S. K., 2004, "Fatigue Life Estimation of an Engine Rubber Mount," Int. J. of Fatigue, Vol. 26, No.5, pp. 553-560. https://doi.org/10.1016/j.ijfatigue.2003.08.025
  5. Lia, Q., Zhao, J. and Zhao, B., 2009 "Fatigue life Prediction of a Rubber Mount Based on Test of Material Properties and Finite Element Analysis," Engineering Failure Analysis, Vol.16, No.7, pp. 2304-2310. https://doi.org/10.1016/j.engfailanal.2009.03.008
  6. Kim, H. and Kim, H. Y., 2006, "Numerical Life Prediction Method for Fatigue Failure of Rubber-Like Material Under Repeated Loading Condition," J. of Mechanical Science and Technology, Vol.20, No.4, pp. 437-582. https://doi.org/10.1007/BF02916474
  7. James, A. G., Green, A. and Simpson, G. M., 1975 "Strain Energy Functions of Rubber I," J. of Applied Polymer Science, Vol. 19, pp. 2033-2058. https://doi.org/10.1002/app.1975.070190723
  8. Thomas, A. G., 1958, "Rupture of Rubber. V. Cut Growth in Natural Rubber Vulcanizates," J. of Polymer Science, Vol. 31, pp. 467-480. https://doi.org/10.1002/pol.1958.1203112324
  9. Kadir A. and Thomas, A. G., 1981, "Tear Behavior of Rubbers over a Wide Range of Rates," Rubber Chemistry and Technology, Vol.54, pp.15-23. https://doi.org/10.5254/1.3535791
  10. Thomas, A. G., 1958, "Rupture of Rubber. V. Cut Growth in Natural Rubber Vulcanizates," J. of Polymer Science, Vol. 31, pp. 467-480. https://doi.org/10.1002/pol.1958.1203112324
  11. Lindley, P. B., 1973, "Relation Between Hysteresis and the Dynamic Crack Growth Resistance of Natural Rubber," Int. J. of Fracture, Vol. 9, No. 4, pp. 449-460.
  12. Young, D. G., 1990, "Application of Fatigue Methods Based on Fracture Mechanics for Tire Compound Development," Rubber Chemistry and Technology, Vol. 63, pp.567-581. https://doi.org/10.5254/1.3538274
  13. Choudhury, N. R. and Bhowmick, A. K., 1990, "Strength of Thermoplastic Elastomers from Rubber Polyolefin," J. of Materials Science, Vo.25, pp. 161-167. https://doi.org/10.1007/BF00544202
  14. Sakulkaew, K., Thomas, A. G. and Busfield, J. J. C., 2011, "The Effect of the Rate of Strain on Tearing in Rubber," Polymer Testing, Vol. 30, pp.163-172. https://doi.org/10.1016/j.polymertesting.2010.11.014
  15. Kim H. and Kim, H. Y., 2005, "Formulation of Tearing Energy for Fatigue Life Evaluation of Rubber Material," Trans. of KSME, Vol. 29, No. 8, pp. 1043-1160.
  16. Rivlin, R. S. and Thomas, A. G., 1952, "Rupture of Rubber. I. Characteristic Energy for Tearing," J. of Polymer Science, Vol. 10, No. 3, pp. 291-318.