• Title/Summary/Keyword: 가변용량 베인 펌프

Search Result 8, Processing Time 0.018 seconds

A Study on the Discharge Pressure Ripple Characteristics of Variable Displacement Vane Pump (가변용량형 유압 베인펌프의 토출압력맥동 특성 연구)

  • 장주섭;김경훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.106-114
    • /
    • 2003
  • The pressure ripple in the delivery port is caused by flow ripple, which is induced by variation of pumping chamber volume. The other reason is the reverse flow from the outlet volume produced by pressure difference between pumping chamber and outlet volume, when the pumping chamber is connected with the outlet volume. In this study, a mathematical model is presented for analyzing discharge pressure ripple, which includes vane detachment, cam ring movement , and fluid inertia effects in V-groove in the side plate. From the analysis and experiment, it was found that V-groove on the side plate, coefficient of spring supporting the cam ring, and average discharge pressure are the main factors of discharge pressure ripple in variable displacement vane pump. The theoretical results, provided in this study, were well agreed with experimental results. The analytical model to estimate the magnitude of pressure ripple in this study is expected to be used f3r the optimal design of the variable displacement vane pump.

유압 베인펌프 내부 회전체의 역학적 거동시

  • 정재련;김장현
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1990.06a
    • /
    • pp.32-44
    • /
    • 1990
  • 유압 Vane pump는 carming, rotor, vane에 의하여 둘러싸인 공간체적이 rotor의 회전과 함께 변화하면서 pump 작용을 한다. 즉 공간체적이 증가하는 동안은 유압이 저압으로 되어 흡입구에서 유압유를 흡입하고 vane의 존환점 (vane이 가장 많이 출한 점)을 지나면 공간용적이 감소하여 유압류는 고압으로 될 수 있도록 되어있다. 이때 vane은 관성력과 점성력 그리고 유압류의 압력에 의한 힘으로 vane 선단이 캠링의 내면에 밀착되어 회전하도록 되어있다. 유압 vane pump 베인 선단부의 윤활문제와 관련된 지금까지의 연구로서는 Hibi 등에 의한 압력평형형 베인모터, W.D Beck, T.C Edwards에 의한 베인형 콤푸렛셔 Ujiie 등에 의한 베인형 진공펌프, Ueno 등에 의한 가변용량형 베인펌프의 마찰특성에 관한 연구 및 베인 이간 현상에 관한 실험적 연구가 있다. 그러나 이와 같은 연구들의 베인과 캠링 슬라이딩 부분에 관한 취급들은 베인선단 슬라이딩 부분에 가해지는 변동가중이 불명확했기 때문데, 단순히 슬라이딩 부분의 면적이 작다는 이유로 단성유체 윤활상태일 것이라는 확정을 하였을 뿐, 실제적으로 어느 정도의 윤활 상태를 파악하기 위하여 회전하는 vane의 가학적인 거동을 확실하게 규명하고자 함이 본 연구의 목적이다.

  • PDF

Experimental Research on the Power Saving Effect Evaluation of a Variable Displacement Vane Pump for an Automatic Transmission (자동변속기용 가변 용량 베인 펌프의 파워 절감 효과 평가에 대한 실험적 연구)

  • Kim, Chulsoo;Bae, Chulyong;Kim, Chanjung;Kim, Kyusik;Son, Taekwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.1-7
    • /
    • 2014
  • A variable displacement vane pump is possible to improve the fuel economy by varying the pump capacity with a vane mechanism according to the engine operating speed range and reducing its driving torque. In general the experimental evaluation of the vane pump for the transmission has been performed mainly not with the vehicle or dynamometer test rig but with component test rig due to the implementation and safety problems. In this paper, in order to evaluate the performance of the developed vane pump as well as the compatibility with other rotary and hydraulic components of the target transmission, the transmission dynamometer based test rig is implemented where the developed pump is built into it and then the variable pump capacity and effect of power reduction are investigated experimentally.

Analysis of the Mathematical Model of a Variable Displacement Vane Pump for Engine Lubrication (엔진윤활용 가변 베인펌프의 수학적 모델 해석)

  • Truong, D.Q.;Ahn, K.K.;Lee, J.S.
    • Journal of Drive and Control
    • /
    • v.11 no.1
    • /
    • pp.14-24
    • /
    • 2014
  • Variable displacement vane-type oil pumps represent one of the most innovative pump types for industrial applications, especially for engine lubrication systems. This paper presents a complete and accurate mathematical model for a typical variable displacement vane-type oil pump. Firstly, its theoretical model is revised. Secondly, an analysis of power loss factors of this pump type is carefully investigated to optimize the modeling accuracy. Finally, the estimated pump performance using the complete pump model is verified by numerical simulations in comparison with the practical tests.

Development of a mathematic model for a variable displacement vane pump for engine oil (엔진오일용 가변 베인펌프의 수학적 모델 개발)

  • Truong, D.Q.;Ahn, K.K.;Yoon, J.I.;Lee, J.S.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.42-51
    • /
    • 2012
  • Variable displacement vane-type oil pumps represent one of the most innovative pump types for industrial applications, especially for engine lubrication systems. This paper deals with a modeling method for theoretical flow rate investigation of a typical variable displacement vane-type oil pump. This theoretical model is based on the pump geometric design and dynamic analyses. It can be considered as mandatory steps for a deeper understanding of the pump operation as well as for effectively implementing the pump control mechanisms to satisfy the urgent demands of engine lubrication systems. The developed pump model is finally illustrated by numerical simulations.

Oscillation of Camring and Detachment of Vanes from a Camring in a Variable Displacement Vane Pump (가변 용량형 유압 베인 펌프에서 베인의 이간과 캠링의 진동)

  • 장주섭;양광식;윤영환;이종철;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.190-195
    • /
    • 1998
  • This paper reports on the theoretical and expetimental study of the vane and cam ring motions in a variable displacement vane pump which is already used widely in various industrial and automotive applications. Dynamic equations of vane and cam ring motion and flow continuity equations are derived and then solved simultaneously using the numerical method. Vane detachment cause the pressure tipples, noise, wear in cam ring, and decrease the volumetric efficiency. Consequently, Vane detachment occurs due to excess compression in the pumping chamber, and it can be reduced by adjustment of design parmeters.

  • PDF