• Title/Summary/Keyword: 가물막이

Search Result 36, Processing Time 0.018 seconds

The Structural Characteristics of the Temporary Cofferdam in Accordance with the Shape and Size Obtained from Numerical Analysis (유한요소 해석을 통한 형상 및 크기에 따른 가물막이 특성 검토)

  • Kim, Hyun-Joo;Choi, Jin-O;Gwon, Yun-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.1
    • /
    • pp.29-38
    • /
    • 2020
  • These days the circular cross section cofferdam has been frequently used for the earth retaining structures or cut off wall such as ventilating opening, intake tower in cofferdam, shaft for emergency. By the arching effect, the circular cross section type cofferdam has more advantage than a polygon cofferdam in terms of the structural forces and moment. This paper shows the proper approach to analyze the circular cross section cofferdam using 2D Finite Element Method (FEM) for the circular stiffener (ring beam) evaluation. Besides, the various shapes of cofferdam indluding circular cross section have modeled the 3D Finite Element Mothod (FEM). The circular cross section cofferdam shows the minimum reaction force compared with the other shapes of cofferdam.

Numerical Investigation on Seepage Discharge Inside a Cylindrical Cut-off Wall (수치해석을 이용한 대형원형강재 가물막이의 침투유량 분석)

  • Ssenyondo, Vicent;Tran, Van An;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.51-60
    • /
    • 2018
  • Recently, a cylindrical cut-off wall was proposed as a new technology for temporary offshore works. The cut-off wall has a cylindrical shape, so seepage analyses are necessary to analyze the effect of wall shape. In this study, a numerical analysis was performed to investigate the seepage discharge inside cut-off walls. The numerical modeling was verified by comparing with the theoretical solution for the cofferdam with double sheet piles. Two different flow conditions were compared between 2-dimensional flow and axisymmetric flow. The results showed that the discharge of the axisymmetric flow was about 1.55 times larger than that of 2-dimensional plain flow. A parametric study was carried out by varying wall radius, penetration depth of the wall, and total head difference between in and outside of the wall. The discharge decreased with the increase of the penetration depth and the wall radius. Finally, the design equations were suggested to determine the discharge for the preliminary design of the cylindrical cut-off wall.

Field Installation Test of the Circular Steel Cofferdam Using Suction Pressure (석션압을 이용한 원형강관 가물막이 현장설치 실험)

  • Kim, Jae-Hyun;Xin, Zhen-Hua;Lee, Ju-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.10
    • /
    • pp.5-19
    • /
    • 2020
  • With increasing demand for offshore structures, the demand for temporary structures to help the offshore construction work has increased. A cofferdam is a temporary barrier to stop the inflow of water in the construction site and allows working in the dry condition when the construction is done within the water. However, it is a major cause of construction delays and increased costs because additional works are required to block the water inflow. Recently, in order to overcome the limitations of the conventional cofferdam methods and to increase economic efficiency, a large-diameter steel cofferdam method has been proposed which can be installed quickly in the seabed by using the suction pressure. In this circular steel cofferdam method, the top side of the cofferdam including the top-lid is always exposed above the sea level in order to use it as a water barrier, unlike the conventional suction bucket foundation. After installation, the top-lid of the cofferdam is removed and the water filled inside the cofferdam is discharged to make the interior dry condition. In this study, the circular steel cofferdam with a 5 m inner diameter was fabricated and the installation tests were conducted at the Saemaguem test site. During the experiment, variation of suction pressure, leakage between connections, structure deformation, and inclination of the steel cofferdam were measured and post-analyzed. This study verified the new circular steel cofferdam method and confirmed that the suction installation method can be successfully used for various purposes on offshore structures.

Development of Reuseable Water Membrane for Temporary Reservoir Volume Increasing and Water Blocking (재이용이 가능한 저수지 증고 및 하천용 가물막이 개발)

  • Kim, Phil Shik;Kwon, Hyung Joong;Lee, Jae Hyouk;Choim, Bum Jun;Park, Hyun Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.560-560
    • /
    • 2015
  • 우리나라 연평균 수자원 총량은 1,297억톤이고 이용가능한 수자원량은 58%(753억톤)이며, 이 중 바다로 유실되는 32%(420톤)를 제외하고 연간 26%(333억톤)을 이용하고 있다. 용도별로 보면 생활용수 75억톤, 공업용수 21억톤, 농업용수 159억톤 및 유지용수 78억톤 등으로 사용되며 농업용수가 약 48%로 가장 많은 양이 차지하고 있다. 농업용수는 국내 수자원 소비량 중 가장 많은 양을 차지하고 있으나, 주기적인 가뭄에 따른 용수 부족이 매년 심각한 문제로 대두되고 있는 실정이며, 이에 대한 대책으로 저수지 준설, 둑 높이기, 다단계 양수장 건설 등을 통한 저수량 확보 사업이 진행되고 있으나 준설 및 둑 높이기시 막대한 사업비와 양수장 조성 공간 부족 등으로 농업용수 확보에 어려움이 발생하고 있다. 국내에서는 수자원 개발 및 친수공간 조성을 목적으로 매년 1,000여건의 하천공사가 실시되고 있으며, 하천공사로 인해 가물막이의 설치 및 해체가 계속적으로 발생하고 있다. 하천공사시 가물막이 설치를 위해 중장비의 출입 반드시 필요하나 중장비 출입이 어려운 지역에서는 공사기간 지연 및 경제성 등의 문제로 어려움을 겪고 있는 실정이다. 이에, 본 연구에서는 휴대용 차수막의 구조개선을 통해 (1) 저수지 증고 및 하천 가물막이에 적합한 설계 및 설치 방법을 개발하고, (2) 수압 및 부유물질에 안전하도록 강도를 개선하였으며, (3) 내구성, 경제성, 유지관리성이 개선된 재이용이 가능한 휴대용 차수막을 개발하였다. 휴대용 차수막 개발로 인해 저수지 증고 및 하천 가물막이 뿐만 아니라 방재 및 레크레이션용도 등 다목적 활용이 높은 것으로 나타나 수자원 분야에 다수 적용될 것으로 기대된다.

  • PDF

Numerical Investigation on Structural Behavior of a Lid with Stiffeners for Suction-installed Cofferdams (석션 가물막이 보강 상판의 구조 거동에 대한 수치해석 연구)

  • Kim, Jeongsoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.7-17
    • /
    • 2019
  • With increasing demand for large offshore infrastructures, suction cofferdams have been large, and the lid stiffener arrangement for a suction cofferdam has become a key element in cofferdam design to constrain the flexural deformation effectively. This study analyzed the changes in the structural behavior of a lid for a suction cofferdam due to lid stiffeners to provide insights into effective stiffener arrangements. By investigating conventional suction anchors, several stiffener patterns of a lid for a polygonal suction cofferdam were determined and analyzed. The structural performance of the stiffened lids was estimated by comparing the stress and deformation, and the reaction distributions on the edge of lid were investigated to analyze the effects of the stiffener arrangement on the lid-wall interface. Finite element analysis showed that radial stiffeners contribute dominantly to decreasing the stress and vertical deflection of the lids, but the stiffeners cause an increase in shear forces between the lid and wall; the forces are concentrated on the lid near the areas reinforced with radial stiffeners, which is negative to lid-wall connection design. On the other hand, inner and outer circumferential stiffeners show little reinforcement effects in themselves, while they can help reduce the stress and deformation when arranged with partial radial stiffeners simultaneously.