• Title/Summary/Keyword: 가돌리늄

Search Result 69, Processing Time 0.027 seconds

A Comparison Study of Signal Intensity of Gadolinium Contrast Media on Fast Spin echo and Ultra Short Time Echo Pulse Sequence at 3T MRI-Phantom Study (3T 자기공명영상 Fast Spin Echo (FSE)와 Ultra Short Time Echo (UTE) 펄스 시퀀스에서 가돌리늄 조영제 희석농도와 신호강도 비교 -팬텀 연구)

  • Lee, Suk-Jun;Yu, Seung-Man
    • Journal of radiological science and technology
    • /
    • v.38 no.3
    • /
    • pp.253-259
    • /
    • 2015
  • The information of contrast media concentration on target organ is very important to get reduce the side effect and high contrast imaging. We investigated alternation of signal intensity as a function of the modality of Gd-based contrast media on spin echo and ultra short time echo (UTE) of T1 effective pulse sequence at 3T MRI unit. Gadoxetic acid, which is a MRI T1 contrast medium, was used to manufacture an agarose phantom diluted in various molarities, and sterile water and agarose 2% were used as the buffer solution for the dilution. The gold standard T1 calculation was based on coronal single section imaging of the phantom mid-point with 2D Inversion recovery spine-echo pulse sequence MR imaging for testing of phantom accuracy. The 1-2mmol/L and 7mmol/L was shown the maximum signal intensity on spin echo and UTE respectively. We confirm the difference of contrast media concentration which was shown the maximum signal intensity depending on the T1 effective pulse sequence.

Thermoluminescene Properties of Li6Gd(BO3)3:Ce3+ Scintillation Single Crystal (리튬 가돌리늄 보레이트 섬광단결정의 열형광 특성)

  • Kim, Sunghwan;Lee, Joonil
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.7
    • /
    • pp.455-459
    • /
    • 2014
  • We grew the $Li_6Gd(BO_3)_3:Ce^{3+}$ scintillator and determined the scintillation and thermoluminescence properties for X-rays. The emission spectrum of $Li_6Gd(BO_3)_3:Ce^{3+}$ is located in the range of 370~500 nm, peaking at 423 nm an 455 nm, due to the $4f{\rightarrow}5d$ transition of $Ce^{3+}$ ions. The fluorescence decay time of the crystal is composed three components. The fast component is 60 ns (25%), the intermediate component is 787 ns (29%) and the slow component is $5.9{\mu}s$ (46%) of the crystal. The after-glow is caused by the electron and hole traps in the crystal lattice. We determined physical parameters of the traps in the crystal. The thermoluminescence trap are composed two traps. The determined activation energy (E), kinetic order (m) and frequency factor (s) of the first trap are 0.65 eV, 1.01 and $6.9{\times}10^8s^{-1}$. And, the determined activation energy, kinetic order and frequency factor of the second trap are 0.96 eV, 1.79 and $3.1{\times}10^{12 }s^{-1}$, respectively.

A Monte Carlo Study of Dose Enhancement with kilovoltage and megavoltage photons (몬테칼로 기법을 이용한 kV, MV X선에서의 선량증가 효과 비교 평가)

  • Hwang, ChulHwan;Im, In-Chul;Kim, Jung-Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.2
    • /
    • pp.87-94
    • /
    • 2017
  • Monte Carlo simulations were used to assess dose enhancement effects for 60-, 90-, 120-, and 150-kV X-rays, and for 6- and 15-MV X-rays. The MCNPX code was used for a computer simulation of the ICRU slab phantom, and gold, gadolinium, and iron oxide (Fe2O3) were employed as dose enhancement agents. In consideration of the buildup region of the incident energy, agent concentrations of 5, 10, 15, and 20 mg/g were inserted on the surface of the phantom at a depth of 5 cm. Based on baseline values obtained in the absence of dose enhancement agents, a quantitative analysis was performed by evaluating depth-dependent changes in the absorbed energy and the dose enhancement factor (DEF). A higher concentration of dose enhancement agents led to a greater dose enhancement effect with iron oxide, gadolinium, and gold in descending order. For kilovoltage (kV) X-rays, as the incident energy was decreased and as the energy became closer to the ionization potential of the atoms in the enhancement agent, the dose enhancement effect increased. In the megavoltage (MV) X-ray range, dose enhancement was higher at 6 MV compared with 15 MV. However, the overall dose enhancements were significantly lower compared to the results obtained with kV X-rays.

Pharmacokinetics and Bio-distribution of New Gd-complexes of DTPA-bis (amide) (L3) in a Rat Model (쥐를 이용한 새로운 가돌리늄 조영제 Gd-DTPA-bis(amide)(L3)의 약동학 및 생체내 분포 특성에 대한 연구)

  • Yan, Gen;Wu, Renhua;Chang, Yongmin;Kang, Duksik
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.4
    • /
    • pp.259-266
    • /
    • 2013
  • Purpose : To investigate the blood pharmacokinetics and bio-distribution of DTPA-bis-amide (L3) Gd(III) complexes. Materials and Methods: The pharmacokinetics and bio-distribution of Gd $(L3)(H_2O){\cdot}nH_2O$ were investigated in Sprague-Dawley rats after intravenous administration at a dose of 0.1 mmol Gd/kg. The Gd content in the blood, various tissues, and organs was determined by ICP-AES. Blood pharmacokinetic parameters were calculated using a two-compartment model. Results: The half-lives of ${\alpha}$ phase and ${\beta}$ phase Gd $(L3)(H_2O){\cdot}nH_2O$ were $2.286{\pm}0.11$ min and $146.1{\pm}7.5$ min, respectively. The bio-distribution properties reveal that the complex is mainly excreted by the renal pathway, and possibly excreted by the hepatobiliary route. The concentration ratio of Gd (III) was significantly higher in the liver and spleen than in other organs, and small amounts of Gd (III) ion were detected in the blood or other tissues of rats only after 7 days of intravenous administration. Conclusion: The MRI contrast agent Gd $(L3)(H_2O){\cdot}nH_2O$ provides prolonged blood pool retention in the circulation and then clears rapidly with minimal accumulation of Gd(III) ions. The synthesis of gadolinium complexes with well-balanced lipophilicity and hydrophilicity shows promise for their further development as blood pool MRI contrast agents.

Optimization of Flip Angle at Head & Neck MR Angiography using Gadoteridol (Gadoteridol을 이용한 Head & Neck MR Angiography에서의 적정 Flip Angle)

  • Jeong, Hyunkeun;Kim, Mingi;Song, Jaejun;Nam, Kichang;Choi, Hyunsung;Jeong, Hyundo;Kim, Hochul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.151-159
    • /
    • 2016
  • In this research, we tried to suggest moderate FA(Flip Angle) for CE(Contrast Enhnaced)-Head&Neck MR Angiography with Gadoteridol. For this study, we did test MR phantom and clinical study according to FA change. After that, quantitative analysis was progressed. The results of MR phantom study were as follow: RSP(Reaction Starting Point)was recorded within 300~400 mmol. MPSI(Max Peak Signal Intensity) was 2,086, 3,705, 5,109, 6,194, 7.096, 7,192 [a.u]. MPP(Max Peak Point) was shown at 30, 50, 50, 40, 50, 40 mmol. IRMPSI(Increase Rate of MPSI) was 77.6%, 37.9%, 21.2%, 14.6%, 1.4% as increasing of FA. The results of clinical study were as follow SICB(Signal Intensity of Carotid artery Bifurcation) was recorded respectively 392.5, 4165.2, 4270, 3502.2, 3263.7, 3119.6 [a.u]. ORA(Occurence Rate of Artifact) was increased as 0, 0, 20, 40, 50, 70%. According to this research, we are not only able to assure that increase of FA can be effect on H1 spin's SI(Signal Intensity) which was combined with gadolinium agent, but also be effect on artifact rate in blood vessel. In clinical field, we expect that CE-Head&Neck MR Angiography can be performed in a practical way with this research.

Analysis of Radiation Dose Enhancement for Spread Out Bragg-peak of Proton (확산된 피크의 양성자에서 선량 증강 현상에 대한 분석)

  • Hwang, Chulhwan;Kim, JungHoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.253-260
    • /
    • 2019
  • Radiation dose enhancement is a method of increasing the cross section of interaction, thus increasing the deposited dose. This can contribute to linear energy transfer, LET and relative biological effectiveness, RBE. Previous studies on dose enhancement have been mainly focused on X, ${\gamma}-rays$, but in this study, the dose enhancement was analyzed for proton using Monte Carlo simulation using MCNP6. Based on the mathematical modeling method, energy spectrum and relative intensity of spread out Bragg-peak were calculated, and evaluated dose enhancement factor and dose distribution of dose enhancement material, such as aurum and gadolinium. Dose enhancement factor of 1.085-1.120 folds in aurum, 1.047-1.091 folds in gadolinium was shown. In addition, it showed a decrease of 95% modulation range and practical range. This may lead to an uncertain dose in the tumor tissue as well as dose enhancement. Therefore, it is necessary to make appropriate corrections for spread out Bragg-peak and practical range from mass stopping power. It is expected that Monte Carlo simulation for dose enhancement will be used as basic data for in-vivo and in-vitro experiments.

The Effect of Refractory Crucible on Microstructure of Duplex Stainless Steel Cast with Gadolinium during Air Induction Melting (대기용해 시 내화물 도가니의 종류가 가돌리늄(Gadolinium)을 함유한 듀플렉스 스테인레스 강의 미세조직에 미치는 영향)

  • Ahn, Ji-Ho;Lim, Jae-han;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.35 no.5
    • /
    • pp.114-119
    • /
    • 2015
  • This paper reports the effect of a refractory crucible type on the microstructure of duplex stainless steel (DSS) cast with the addition of gadolinium using air-induction melting. Grade 4A DSSs with 1 wt% of gadolinium (Gd) were fabricated in various crucibles including alumina ($Al_2O_3$), magnesia (MgO), calcia (CaO) coated with yttria ($Y_2O_3$) and graphite. The standard free energies of the formation of calcium and yttrium oxide were lower than those of gadolinium oxide and other crucible elements based oxide. The yield of Gd in DSS using $Al_2O_3$, MgO, CaO-coated $Y_2O_3$ and graphite was 5, 19, 83 and 96%, respectively. As Gd yield increased, the amount of Gd-based inclusions increased, the size of the inclusions were reduced, and the inclusions became evenly distributed.

Study on the evaporation of high melting temperature metal by using the manufactured electron hem gun system (전자총 시스템 제작과 이를 이용한 고융점 금속 증발에 관한 연구)

  • 정의창;노시표;김철중
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • An axial electron beam gun system, which emits the electron beam power of 50 kW, has been manufactured. The electron beam gun consists of two parts. One is the electron beam generation part. including the filament, cathode, and anode. The maximum beam current is 2 A and the acceleration voltage is 25 kV. The other part includes the focusing-, deflection-, and scanning coils. The beam diameter and ham trajectory can be controlled by these coils. The characteristic of each part is measured ior the optimum condition of evaporation process. Moreover, Helmholtz coil is installed inside the vacuum chamber to adjust the incident angel of the beam to the melting surface for the maximum evaporation. We report on the evaporation rates for zirconium(Zr) and gadolinium(Gd) metals which have the high melting temperatures.

Microstructure and Fracture Property of 1A Grade Duplex Stainless Steel with the Addition of Gadolinium (가돌리늄(Gd) 첨가에 따른 1A 등급 듀플렉스 스테인레스 강의 미세조직 및 파괴 특성 변화)

  • Lim, Jae-han;Jung, Hyun-Do;Ahn, Ji-Ho;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.36 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • CD4MCU duplex stainless steel with gadolinium was fabricated as a neutron absorbing material by the air induction melting method. The gadolinium formed intermetallic compounds of Cu-Gd-Fe. There were no significant differences in hardness or ultimate tensile strength between experimental alloys. With the addition of gadolinium the yield strength of the cast alloy significantly increased, from $478.8{\pm}11.6$ to $514.2{\pm}29.9MPa$, whereas elongation of the cast alloy decreased with the addition of gadolinium, from $26.0{\pm}7.1$ to $7.0{\pm}2.5%$ due to the formation of gadolinium based intermetallic compounds.

Influence of Gadolinium Addition on Mechanical and Corrosion Properties of 2205 Duplex Stainless Steel (가돌리늄 첨가에 따른 2205 듀플렉스 스테인레스 강의 기계적 및 부식 특성 변화)

  • Lim, Jae-han;Ahn, Ji-Ho;Moon, Byung-Moon;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.35 no.6
    • /
    • pp.163-169
    • /
    • 2015
  • This study reports the influence of gadolinium (Gd) addition on mechanical and corrosion properties of 2205 duplex stainless steel. In all alloys produced, regardless of the initial Gd content, Gd-based inclusions were well distributed in the duplex stainless steel matrix. As the Gd content increased from 0 wt% to 0.19 wt%, the ultimate tensile strength and hardness of the alloy increased from 630 MPa to 977 MPa and from 57 to 61, respectively, while elastic modulus, tensile elongation and impact energy of the alloy decreased. The critical crevice temperatures of Alloy1, Alloy2 and Alloy3 were $20^{\circ}C$, $20^{\circ}C$ and $15^{\circ}C$, respectively.