• Title/Summary/Keyword: 가교거동

Search Result 167, Processing Time 0.025 seconds

Synthesis and Curing Behaviors of Polyisoimide Oligomers with Ethynyl End Groups (Ethynyl 말단기를 갖는 Polyisoimide 올리고머의 합성 및 이들의 경화거동에 관한 연구)

  • Choi, Seok Woo;Kim, Bo Ock;Kim, Ji-Heung;Nam, Sung Woo;Jeon, Boong Soo;Kim, Young Jun
    • Polymer(Korea)
    • /
    • v.38 no.6
    • /
    • pp.774-781
    • /
    • 2014
  • Acetylenic or phenylethynyl end-capped polyisoimide oligomers ($M_w$ 2500 g/mol, 5000 g/mol) based upon 4,4'-diamino diphenyl ether (4,4'-ODA)/4,4'-oxydiphthalic anhydride (ODPA) and 4,4'-ODA/3,3',4,4'-benzophenone tetracarboxylic acid dianhydride (BTDA) were synthesized by using 4-ethynylaniline (4-EA) or 4-phenylethynyl phthalic anhydride (4-PEPA) as an end capper. The incorporation of ethynyl groups were confirmed by FTIR spectroscopy. The isomerization temperature was influenced by molecular weight as well as the backbone structure of polyisoimides oligomers. Thus, polyisoimide oligomers with molecular weight of 2500 g/mol was found to be imidized at temperature $10^{\circ}C$ lower than that for the oligomers with molecular weight of 5000 g/mol. The crosslinking reaction of ethynyl groups occurred at a higher temperature than that for the isoimide/imide isomerization reaction. These two reactions were totally or partially overlapped on the DSC thermograms for the polyisoimide oligomer end-capped with 4-EA. Kinetics of thermal imidization and crosslinking reactions for the 4,4'-ODA/ODPA polyisoimide oligomers end-capped with 4-PEPA were investigated by performing dynamic DSC experiments at heating rate of $10^{\circ}C/min$. The activation energy and pre-exponential factors were 141 kJ/mol and $1.45{\times}10^{13}min^{-1}$ for the imidization reaction and 177 kJ/mol and $2.90{\times}10^{13}min^{-1}$ for the crosslinking reaction, respectively.

Seismic Performance of Precast Infill Walls with Strain-Hardening Cementitious Composites (변형경화형 시멘트 복합체를 사용한 프리캐스트 끼움벽의 내진성능)

  • Kim, Sun-Woo;Yun, Hyun-Do;Jang, Gwang-Soo;Yun, Yeo-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.327-335
    • /
    • 2009
  • In the seismic region, non-ductile structures often form soft story and exhibit brittle collapse. However, structure demolition and new structure construction strategies have serious problems, as construction waste, environmental pollution and popular complain. And these methods can be uneconomical. Therefore, to satisfy seismic performance, so many seismic retrofit methods have been investigated. There are some retrofit methods as infill walls, steel brace, continuous walls, buttress, wing walls, jacketing of column or beam. Among them, the infilled frames exhibit complex behavior as follows: flexible frames experiment large deflection and rotations at the joints, and infilled shear walls fail mainly in shear at relatively small displacements. Therefore, the combined action of the composite system differs significantly from that of the frame or wall alone. Purpose of research is evaluation on the seismic performance of infill walls, and improvement concept of this paper is use of SHCCs (strain-hardening cementitious composites) to absorb damage energy effectively. The experimental investigation consisted of cyclic loading tests on 1/3-scale models of infill walls. The experimental results, as expected, show that the multiple crack pattern, strength, and energy dissipation capacity are superior for SHCC infill wall due to bridging of fibers and stress redistribution in cement matrix.

Mechanical Properties of Low Temperature and Fast Cure Epoxy with Various Mercaptans (Mercaptan 경화제에 의한 저온속경화 에폭시의 열적 기계적 물성)

  • Kim, Won Young;Eom, Se Yeon;Seo, Sang Bum;Lee, Kee Yoon
    • Polymer(Korea)
    • /
    • v.37 no.5
    • /
    • pp.557-562
    • /
    • 2013
  • The thermal expansion and mechanical properties of diglycidyl ether of bisphenol A (DGEBA) with mercaptan hardeners were studied by a comparative method with an amine-adduct type hardener. Thermal expansion and dynamic mechanical properties were measured by thermo mechanical analysis (TMA) and dynamic mechanical ananlysis (DMA), respectively. The $T_g$ and the coefficient of thermal expansion (CTE) of epoxy/amine-adduct type hardener system were $82.6^{\circ}C$ and 71.2 $ppm/^{\circ}C$, respectively. As the number of -SH functional group of mercaptan hardener increased, the $T_g$ rapidly decreased and gradually increased up to ca. $80^{\circ}C$ and the CTE under the $T_g$ rapidly increased to ca. 200 $ppm/^{\circ}C$ from 80 $ppm/^{\circ}C$ and decreased to ca. 100 $ppm/^{\circ}C$. The crosslinking density of epoxy with amine-adduct type hardener was ca.1.5 $mol/cm^3$, while that of epoxy with mercaptan hardeners increased from 1.0 to 1.7 $mol/cm^3$, as the number of -SH functional group increased. The storage modulus can increase up to 2700MPa at $30^{\circ}C$.

Curing behavior of Photo-Curable Materials by Photo-Shrinkage Test (광원 경화형 소재의 수축률평가를 통한 광경화 거동 평가)

  • Park, Ji-Won;Bae, Kyung-Yul;Kim, Pan-Seok;Lim, Dong-Hyuk;Kim, Hyun-Joong;Cho, Jin-Ku;Kim, Baek-Jin;Lee, Sang-Hyeup
    • Journal of Adhesion and Interface
    • /
    • v.11 no.2
    • /
    • pp.57-62
    • /
    • 2010
  • Photo-curable material can be crosslinked among molecules by light source such as UV and visible light materials. Material properties are controlled by crosslink reaction. Shrinkage is occured during the curing reaction of material structure. Phenomenon of shrinkage stress occurs inside the product and reduce the stability of the product causes problems. Heat shrink the evaluation of the phenomenon has been formalized. But the evaluation of photo shrink is not enough. In this experiment, real-time contract with shrinkage tester phenomena and analysis degree of shrinkage of the material differences. According to the research, experimental results and theoretical analysis of the results were big differences. Shrinkage, especially for a number of different functional groups that were very different theory. These differences are occurred by the molecular structure different and not enough reaction.

A Study on the Curing Properties of Kevlar/Epoxy Prepreg (케블라/에폭시 프리프레그의 경화특성에 관한 연구)

  • 제갈영순;이원철;권오혁;윤남균;임길수;안종기;박경준
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.1-7
    • /
    • 2001
  • The studies on the formulation and curing behaviors of Kevlar/Epoxy prepreg for NOSE CONE of aircraft were presented in this paper. Dielectrometer and differential scanning calorimeter were used in order to check the curing behaviors. This prepreg showed the lowest ionic viscosity around $120^{\circ}C$, and then the ionic viscosity was gradually increased up to $200^{\circ}C$. This indicated that the curing reaction of this prepreg started at $120^{\circ}C$ and the molecular weight was increased by the accelerated thermal cross-linking reaction. The loss factor and tan $\delta$ values were also measured and discussed. The loss factor behaviors of Kevlar/Epoxy prepreg, which is related to the fluidity of matrix, were fecund to be similar with that of ionic viscosity. The thermal reaction properties of this prepreg were also studied by differential scanning calorimeter.

  • PDF

Effects of Reactive Diluents on the Curing Behavior of Epoxy Resin (에폭시 수지의 경화 거동에 미치는 반응성 희석제의 영향)

  • Kim, Wan-Young;Lee, Dai-Soo;Kim, Hyung-Soon;Kim, Jung-Gee
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.1030-1035
    • /
    • 1994
  • Curing behavior and glass transition temperatures of epoxy resins into which reactive diluents were added to control processability were investigated. Heat of cure generated of the epoxy resin was reduced with butyl glycidyl ether(BGE) and phenyl glycidyl ether(PGE) contents. $T_g$ of the resin was decreased with the amount of reactive diluents and it was attributed to increased molecular weight between crosslink points. Cure kinetics of the resins was studied employing autocatalytic reaction model and found that reaction constants decreased as the contents of reactive diluent was increased.

  • PDF

Non-isothermal TGA Study on Thermal Degradation Kinetics of ACM Rubber Composites (비등온 TGA를 이용한 ACM 고무복합재료의 열분해 거동 연구)

  • Ahn, WonSool;Lee, Hyung Seok
    • Elastomers and Composites
    • /
    • v.48 no.2
    • /
    • pp.161-166
    • /
    • 2013
  • Thermal degradation behavior of chlorine cure-site ACM and carboxylic cure-site ACM rubbers was studied by non-isothermal TGA thermal analysis. Carboxylic cure-site ACM rubber exhibited comparatively more thermally stable than chlorine cure-site ACM, showing higher peak temperature, at which maximum reaction rate occurred. Activation energies from Kissinger method were calculated as 118.6 kJ/mol for the chlorine cure-site ACM and 105.5 kJ/mol for the carboxylic cure-site ACM, showing similar values from Flynn-Wall-Ozawa analysis over the conversion range of 0.1~0.2. From the analysis of the reaction order change, both samples seemed thermally decomposed through the multiple reaction mechanism as is the common rubber materials.

Effects of Carbon Blacks on Viscoelastic Behavior of Natural Rubber Melt (천연고무 용융체의 점탄성적 거동에 대한 카본블랙의 영향)

  • Shin, Soo;Choi, Chang-Nam;Nah, Chang-Woon;Kaang, Shin-Young
    • Elastomers and Composites
    • /
    • v.34 no.3
    • /
    • pp.262-268
    • /
    • 1999
  • Effect of carbon blacks (CBs) on the stress relaxation and the elastic recovery of uncrosslinked natural rubber (NR) was examined. It was found that if the type of CB is characterized by smaller size and higher structure, the stress relaxation is more delayed and the elastic recovery becomes more active. These results are attributed to the degree of bound rubber, i.e., the interaction between NR and CB.

  • PDF

Modification of Cotton Fibers via In-Situ Polymerization of Silane Monomers (Sliane 중합을 통한 면섬유의 개질에 관한 연구)

  • 오경화
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.18 no.3
    • /
    • pp.410-418
    • /
    • 1994
  • 다양한 유기관능기를 가진 Silane가요제의 기능 양면성과 독특한 화학적 구조는 이들이 면섬유의 물성을 향상시키기 위한 in-situ 중합 및 가교처리의 단량체로 사용될 수 있는 가능성을 시사하므로, 본 연구에서는 이를 위한 기초 실험으로 수용액 상의 silane 단량체의 거동과 in-situ중합의 가능성을 조사하였다. 관능기를 달리하는 methyltriethoxysilane (MES), vinyltriethoxysilane (VES), vinyltriacetoxysilane (VAS)과 epoxy (glycidoxy) propyltrimethoxysilane (EMS) 등이 silane단량체로 선택되었다. Silane수용액의 안정성과 용해도는 단량체의 농도가 증가함에 따라 감소하였으며, pH에 의해서도 크게 영향을 받아 PH 3과 4.5사이에서 가장 안정함을 나타내었다. 10분간의 중기 고착과정에 의해서 충분한 양의 단량체가 면섬유 안으로 확산되었으며, 섬유의 방추성은 반응성이 높은 organotin촉매제를 사용하여 열처리한 후 증가되었다.

  • PDF

항공기용 하이브리드 복합재료의 섬유배향각에 따른 피로균열전파와 층간분리 거동

  • 김태수;송삼홍;김철웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.76-76
    • /
    • 2004
  • 하이브리드 복합재료 중에서 적충형태의 Al/GFRP는 단일재 알루미늄에 비해 피로특성, 비강도, 비강성 등이 매우 우수하여 Fig. 1과 같이 항공기 주익 구조에 주로 적용된다. 그러나 이러한 Al/GFRP 적층재 역시 장시간에 걸쳐 비행하중을 받게 되면 다양한 형태의 파손이 발생할 수 있다. 이 중 알루미늄층과 섬유층 사이에서 발생하는 층간분리는 Al/GFRP 적층재의 대표적인 피로파손 형태이며, 현재 이러한 파손은 다 방면으로 연구되고 있다.(중략)

  • PDF