• Title/Summary/Keyword: 風洞

Search Result 765, Processing Time 0.022 seconds

Study on the Aerodynamic Characteristics of an Wing Depending on the Propeller Mounting Position (프로펠러 장착 위치에 따른 날개의 공력 특성 변화 연구)

  • Inseo, Choi;Cheolheui, Han
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.54-63
    • /
    • 2022
  • Recently, electric propulsion aircraft with various propeller mounting positions have been under construction. The position of the propeller relative to the wing can significantly affect the aerodynamic performance of the aircraft. Placing the propeller in front of the wing produces a complex swirl flow behind or around the propeller. The up/downwash induced by the swirl flow can alter the wing's local effective angle of attack, causing a change in the aerodynamic load distribution across the wing's spanwise direction. This study investigated the influence of the distance between a propeller and a wing on the aerodynamic loads on the wing. The swirl flow generated by the propeller was modelled using an actuator disk theory, and the wing's aerodynamics were analysed with the VSPAERO tool. Results of the study were compared to wind tunnel test data and established that both axial and spanwise distance between the propeller and the wing positively affect the wing's lift-to-drag ratio. Specifically, it was observed that the lift-to-drag ratio increases when the propeller is positioned higher than the wing.

Section Model Study on the Aerodynamic Behaviors of the Cable-Stayed Bridges with Two I-Type Girders Considering Structural Damping and Turbulence Intensity (2개의 I형 거더를 가진 사장교의 구조감쇠비 및 난류강도를 고려한 공기역학적 거동에 관한 단면모형실험 연구)

  • Cho, Jae-Young;Kim, Young-Min;Cho, Young-Rae;Lee, Hak-Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6A
    • /
    • pp.1013-1022
    • /
    • 2006
  • Although the cable-stayed bridges with two I-type girders inherently do not have good aerodynamic characteristics, a lot of the bridges with this type girders are constructed in Korea recently because of an economical merit. This paper investigated the aerodynamic characteristics of the cable-stayed bridges with two I-type girders. Section model tests were conducted in order to investigate the aerodynamic behaviors of this section with varying of the angles of attack, turbulence intensity and damping ratios. Two deck section configurations with different torsional stiffness were studied under construction and after completion respectively. Three types of the fairings were investigated to improve the aerodynamic characteristics of the bridges. The result of this study showed that the traditional section model test in uniform flow estimates the aerodynamic behavior rather pessimistically. The wind induced responses of the bridges were severely varied in accordance with the turbulence intensity and the structural damping ratio. The proposed fairing reduced the magnitude of the vortex-shedding vibrations and buffeting responses. It also increased the wind speed at which flutter occurs. It is expected that these investigations would provide a lot of information for the design of the cable stayed bridges with two I-type girders regarding wind resistance.

Monitoring of Vegetation Coverage for Selecting Plants for Beach Revegetation (해안녹화식물 선발을 위한 식생 피복도 모니터링)

  • Kim, Dongyeob;Im, Sangjun;Kweon, Hyuck-Min;Yim, Jaehong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.519-524
    • /
    • 2010
  • This study was carried out to select suitable plants for beach revegetation as a preliminary study for quantifying the effect of decreasing sand movement. After planting some herbal plants in field, monitoring of temporal change of vegetation coverage which was index of the growth rate was conducted. Through literature reviews, 24 candidate plants for beach revegetation were selected, then seven species of them, Peucedanum japonicum Thunb., Dianthus japonicus Thunb. ex Murray, Sedum oryzifolium Makino, Sedum takesimense Nakai, Sedum spectabile Boreau, Farfugium japonicum (L.) Kitam., Aster sphathulifolius Maxim. were picked through salinity tolerance experiments in laboratory. Seven species selected by salinity tolerance experiments and two additional herbal plants, Prunella vulgaris var. lilacina Nakai and Linaria vulgaris Mill., not the candidates, were nine final species which were planted in the beach around Osan port, Uljin, Korea. The changes of vegetation coverage of each species were investigated from photos periodically taken for about a year using image processing methods. As a result of the monitoring, Sedum takesimensei, Dianthus japonicus and Aster sphathulifolius were observed with high coverages during the whole monitoring while Prunella vulgaris var. lilacina and Linaria vulgaris were observed with low coverage during the same period. Consequently, Sedum takesimensei, Dianthus japonicus and Aster sphathulifolius were concluded as the most suitable plants for beach revegetation. Furthur study to quantify the effects of decreasing sand movement by the selected species is needed.

A Study on Air Resistance and Greenhouse Gas Emissions of an Ocean Leisure Planning Boat (해양레저용 활주형선의 공기저항 및 온실 가스 배출에 대한 연구)

  • Kim, Y.S.;Hwang, S.K.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.3
    • /
    • pp.202-210
    • /
    • 2013
  • As incomes increase, interest in ocean leisure picks up. As a result, a lot of research and developments on hull form design and production of planing boats, mostly used for ocean leisure, are needed. Analysis in researches on resistance of planing boats shows that resistance characteristic of planing boats is different from resistance characteristic of general boats because the former is fast, and its wetted surface is very small. Using Savitsky formula widely used in the calculation of effective horse power in shipbuildingyards, and propulsion system and engine manufacturers, this study calculated total resistance of a research planing boat. Then it analyzed the flow characteristics of the planing boat through theoretical analysis and wind tunnel experiment, and computed air resistance and lift force by changes of speed and trim angle. It also compared and analyzed result of theoretical analysis and experiment of the ratio of air resistance to total resistance under variations of velocity and trim angle. When the study is used to estimate more accurate effective horse power, it is expected to remedy abuses of unnecessarily installing high-powered engine. As nature disasters due to abnormal changes of weather increase, interest in greenhouse gas grows. International Maritime Organization (IMO) legislated Energy Efficiency Design Index (EEDI) and Energy Efficiency Operational Indicator (EEOI) to reduce ship greenhouse gas emissions. But this index will be applied to over 400 tons ships, small ships, emitting more greenhouse gases than larege ships per unit power, will dodge the regulations. Thus, this study indicated a problem by calculating greenhouse gas emissions of an ocean leisure planning boat (a small ship), and suggested the need for EEDI of small ships.

Characteristics of Aerodynamic Damping on Helical-Shaped Super Tall Building (나선형 형상의 초고층건물의 공력감쇠의 특성)

  • Kim, Wonsul;Yi, Jin-Hak;Tamura, Yukio
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.9-17
    • /
    • 2017
  • Characteristics of aerodynamic damping ratios of a helical $180^{\circ}$ model which shows better aerodynamic behavior in both along-wind and across-wind responses on a super tall building was investigated by an aeroelastic model test. The aerodynamic damping ratio was evaluated from the wind-induced responses of the model by using Random Decrement (RD) technique. Further, various triggering levels in evaluation of aerodynamic damping ratios using RD technique were also examined. As a result, it was found that when at least 2000 segments were used for evaluating aerodynamic damping ratio for ensemble averaging, the aerodynamic damping ratio can be obtained more consistently with lower irregular fluctuations. This is good agreement with those of previous studies. Another notable observation was that for square and helical $180^{\circ}$ models, the aerodynamic damping ratios in along-wind direction showed similar linear trends with reduced wind speeds regarding of building shapes. On the other hand, for the helical $180^{\circ}$ model, the aerodynamic damping ratio in across-wind direction showed quite different trends with those of the square model. In addition, the aerodynamic damping ratios of the helical $180^{\circ}$ model showed very similar trends with respect to the change of wind direction, and showed gradually increasing trends having small fluctuations with reduced wind speeds. Another observation was that in definition of triggering levels in RD technique on aerodynamic damping ratios, it may be possible to adopt the triggering levels of "standard deviation" or "${\sqrt{2}}$ times of the standard deviation" of the response time history if RD functions have a large number of triggering points. Further, these triggering levels may result in similar values and distributions with reduced wind speeds and either may be acceptable.