• Title/Summary/Keyword: 風洞

Search Result 765, Processing Time 0.027 seconds

A Study on the Thermal Performance of an Oil Cooler with Dual-cell Model (듀얼셀 모델을 이용한 오일쿨러의 방열성능 연구)

  • Park, Sang-Jun;Lee, Young-Lim
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1111-1116
    • /
    • 2011
  • Heat exchangers have been used for the automotive, HVAC systems, and other various industrial facilities, so the market is very wide. In general, high-efficiency heat exchangers with louver fins are used in the dust-free environment while heat exchangers with wavy fins are used for dusty environment such as construction site, etc. In this study, numerical analysis has been performed for typical heat exchangers, used as oil coolers or fuel coolers, with dual cell model that can handle different grids for the air-side and oil-side of heat exchangers. First wind tunnel tests were conducted to obtain one-dimensional thermal performance data of heat exchangers. Then, heat release rates with varying air flows were numerically predicted using the three-dimensional dual-cell model. The model can greatly enhance the accuracy of thermal design since it includes the effects of nonuniformity of air flows across heat exchangers.

Reducing Effect of Wind-induced Vibration on Rectangular Model of Super-Highrise Building with Length of Corners Cutting (초고층 건물의 각주형 단면에 대한 공력 불안정 진동 및 풍진 저감 효과에 관한 실험적 연구)

  • Cheong, Yung-Bea
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.301-311
    • /
    • 2001
  • For a rectangular-highrise building with aspect ratio about six, the resonant wind speed of wind-induced vibration or galloping start wing speed can be within the design wind speed. The wind-induced vibration and galloping of highrise building with aspect ratio $H/\sqrt{DB}=6$, side ratio D/B=1 to 2 at intervals of 1/4 D/B were investigated in smooth flow. For the reducing effect of wind-induced vibration of highrise building, rectangular-highrise building with corners cutting about side ratio D/B=2 were investigated. Experimental results show that in the smooth flow non corners-cutting cases have tendency of increasing wind-induced vibration and galloping vibration then corner-cutting section. Therefore, the wind-induced vibrations on rectangular-highrise buildings were reduced effectively by using corner cut method.

  • PDF

Measurement of Net Photosynthetic Rate in the Plug Stand (플러그묘 개체군의 순광합성속도 측정)

  • 김용현;고재풍수
    • Journal of Biosystems Engineering
    • /
    • v.22 no.3
    • /
    • pp.311-316
    • /
    • 1997
  • Two methods were used to detrermine the net photosynthetic rate(NPR) in the plug stand using a wind tunnel for plug seedlings Production. One is called as the integration method in which NPR calculated by the use of air current speed and $CO^2$ concentration measured at any heights above the medium surface in a wind tunnel were summed. It was assumed that the air flow at any layer did not mix with the lower or upper air layer. The other is called as the diffusion method in which eddy diffusivities above the plug stand were used to determine the NPR in the plug stand. In this method, $CO^2$ above or inside the plug stand was assumed to be absorbed vertically. NPR determined by the diffusion method was 28~45% of the NPR calculated by the integration method. Considering the magnitude of NPR and the effects of the air current speed on NPR, the integration method would be adequate for the calculation of NPR in the plug stand. Maximum NPR determined using the integration method appeared at the air current speed of 0.7m $s^{-1}$. It was ascribed to the decreased diffusion resistances of $CO^2$ with the increasing air current speed. NPR at the rear region in plug stand was 20~34% lower than that at the front region. NPR sharply decreased with the increase of an elapsed time after the beginning of photoperiod. Therefore $CO^2$ enrichment would be effective to force the growth of plug seedlings in a semi-closed ecological system under artificial lighting.

  • PDF

Wind Load Analysis of 61ton-class Container Crane using the Computation Fluid Dynamics (61ton 컨테이너 크레인의 전산유동해석을 통한 풍하중 분석)

  • Lee, Su-Hong;Lee, Seong-Wook;Han, Dong-Seop;Kim, Tae-Hyung;Han, Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.228-229
    • /
    • 2007
  • Container cranes are vulnerable structure to difficult weather conditions because there is no shielding facility to protect them from high wind This study carried out to analyze the wind load have an effect on container crane according to a wind direction variation The container crane for this research is a model of a 61-ton class tint used broadly in the current ports. The dimension of an external fluid field set up 500m ${\times}$ 200m. In this study, Mean wind load conformed to the 'Design Criteria of Wind Load' in 'Load Criteria of Building Structures' and an external fluid field divided in interval of 10 degrees to analyze effect according to a wind direction From there, we carried out to the computation fluid dynamic analysis using a CFX-10 Therefore as consequence of computation fluid dynamic analysis and wind velocity experiment make a comparative study, we analyzed a wind load for construction design if container crane.

  • PDF

Effects of Downstream Cylinder by Changing Upstream Object's Diameter (상류에 있는 물체의 직경변화에 따라 후류 물체가 받는 영향)

  • Kim, Sang Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.10
    • /
    • pp.859-864
    • /
    • 2014
  • This experimental study investigates the effects of a downstream cylinder in the wake change on upstream object's diameter. A V-shaped object is placed in the upstream of the test section and a circular cylinder containing a load-cell is placed in the downstream. The velocity distribution of the wake generated from the upstream object with a change in its diameter is investigated. Further, the fluctuation in the lift coefficient and Karman-vortex emission frequency with a change in the position of the downstream cylinder is examined. The study results reveal the following. i) The flow velocity in the wake is smaller than that in the main stream. ii) The lock-in phenomenon occurs when the diameter of the upstream object is larger than that of the downstream cylinder. iii) To generate maximum fluctuating lift force of the downstream cylinder in the wake, the position of the downstream cylinder must be moved with changing diameter of the upstream object together.

An Experimental Study on Frequency Characteristics of the Microphone Array Covered with Kevlar in Closed Test Section Wind Tunnel (폐쇄형 시험부에서 케블라 덮개가 장착된 마이크로폰 어레이의 주파수 특성에 대한 실험적 연구)

  • Hwang, Eun-Sue;Choi, Youngmin;Kim, Yangwon;Cho, Taehwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.3
    • /
    • pp.150-159
    • /
    • 2015
  • An experimental study on frequency characteristics of the microphone array covered with Kevlar sheet was conducted in the closed test section. Microphones that were flush-mounted in the wall of wind tunnel were subjected to very high flow noise resulting from the turbulence in the wall boundary layer. This noise interference by the boundary layer was referred as 'a microphone self-noise' and various approaches were studied to reduce this interference. Recessed microphone array with high tensioned cover was one of the good approaches to reduce this self-noise. But, the array cover could cause an unexpected interference to the measuring results. In this paper the frequency characteristics of the microphone array with Kevlar cover was experimentally studied. The white noise was used as a reference noise source. Three kinds of tensions for the Kevlar cover were tested and those results were compared with the test results without the Kevlar cover. The gap effect between the cover and microphone head was also tested to find out the proper position of microphone in the array module. Test results show that the mid-tension and 10mm gap was the best choice in the tested cases.

Aeroelastic Behaviors of Self-anchored Suspension Bridge with Lateral Sag of Main Cable(II) - Focused on the Behavior of Tower - (횡방향 새그를 가진 자정식 현수교의 공탄성 거동(II) - 주탑의 거동을 중심으로 -)

  • Kwon, Soon Duck;Chang, Sung Pil
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.269-275
    • /
    • 1997
  • Wind tunnel test results and their interpretations, which were performed to study the aerodynamic stability of tower of self-anchored suspension bridge, are presented in this paper. Tower and full models were tested under smooth and turbulent flow conditions. In the case of the tower with inclined two columns, the vibration due to wakes were occurred at wide velocity zone because the wakes with various frequencies were generated by inclined upstream column. It has to be emphasized that the vibration characteristics of the tower in the self-anchored suspension bridge may be very sensitive to the longitudinal boundary conditions of the girder at the supports. Because of the two natural frequency of the tower, out-of-plane bending and torsional, were not well separated, coupled motions were observed in a wide range of wind velocity. The effectiveness of corner cut, countermeasure to reduce the tower vibrations, was also studied. It has been found that 1:10, comer cut size to column width, may be the most effective ratio for reducing the vibrations.

  • PDF

CFD Analysis of Aerodynamic Characteristics of a BWB UCAV configuration with Transition effect (천이효과를 고려한 BWB UCAV 형상의 공력 특성 전산해석)

  • Jo, Young-Hee;Chang, Kyoungsik;Sheen, Dong-Jin;Park, Soo Hyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.535-543
    • /
    • 2014
  • A computational simulation for a nonslender BWB UCAV configuration with rounded leading edge and span of 1.0m was performed to analyze its aerodynamic characteristics. The freestream is 50m/s over -4 to 26 degree A.o.A.s. Reynolds number based on the mean chord length is $1.25{\times}10^6$. 3D multi block hexahedral grids are used which allow good grid quality and ease to capture boundary layer. ${\gamma}-Re_{\theta}$ model as well as $k-{\omega}$ SST model is employed to assess the effect of transition for flow behavior. Drag and lift of the UCAV were well predicted while $C_M$ is under predicted at high angle of attacks and influenced by the turbulence models strongly. After assessing pressure distribution, skin friction lines and velocity field around the UCAV configuration, it was found that transition effect should be considered to enhance the prediction of aerodynamic behavior by a vortical flowfield.

An Experimental Investigation on the Flow Field around the Wing Having a Circular Damage Hole (원형 손상 구멍이 있는 날개 주위 유동장에 관한 실험적 연구)

  • Lee, Ki-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.10
    • /
    • pp.954-961
    • /
    • 2008
  • An experimental study has been conducted to investigate the flow field around the wing having a circular damage hole. The damage was represented by a circular hole passing through the model with 10% airfoil chord diameter and normal to the chord. The hole was centered at quarter or half chord. The PIV flow fields and static pressure measurements on the wing upper and lower surface were carried out at Rec=2.85×105 based on the chord length. The PIV results showed the two types of flow structures around a damage hole were formed. The first one was a weak jet that formed an attached wake behind the damage hole. The second one resulted from increased incidence; this was a strong jet where the flow through the hole penetrates into the free-stream resulting in extensive separation of oncoming boundary layer flow and development of a separated wake with reverse flow. The surface pressure data showed a big pressure alteration near the circular damage hole. The severity of pressure alteration was increased as a damage hole located nearer to the leading edge.

Measurements of the Pitch Dynamic Stability Derivatives of a Standard Dynamics Model Using a Forced Vibration Technique (강제진동기법을 이용한 표준동역학 모델의 피치 동안정미계수측정)

  • Cho, Hwan-Kee;Kim, Seung-Pil;Baek, Seung-Woock;Chang, Jo-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.6
    • /
    • pp.489-495
    • /
    • 2007
  • An experimental study was carried out in order to measure the pitch dynamic stability derivatives of a standard dynamics model in a low-speed wind tunnel. When a trigger signal is generated, the aircraft model starts oscillation with constant amplitudes and frequencies provided by DC electrical servomotor. The measured data are simultaneously recorded on a data recorder for 25 cycles of the model oscillation. The Phase shift needed to compute the dynamic stability derivatives is determined by calculating differences between the peak values of the input and output signals from the dynamic stability balance. Stabilator effects on the stability derivatives were also investigated with deflection angles. Although the driving apparatus and experimental equipments manufactured creatively for this study are different from other experiments, the variational trend of dynamic stability derivatives with the angle of attack is in a good accordance with the results of TPI, NAE, and FFA.