• Title/Summary/Keyword: 風洞

Search Result 765, Processing Time 0.026 seconds

Concept Design of Ludwieg Tube at Konkuk University (건국대학교 Ludwieg Tube 개념 설계에 관한 연구)

  • Kim, Young Ju;Byun, Yung Hwan;Park, Soo Hyung;Park, Gisu;Lee, Jongkook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.703-711
    • /
    • 2018
  • A preliminary design tool of a hypersonic Ludwieg tube facility which simulates real-flight environment was developed and its performance was verified by CFD(Computation Fluid Dynamics) calculations. The operating theory of Ludwieg tube was studied to develop the preliminary design tool. Using the preliminary design tool, Ludwieg tube specifications were determined to satisfy target performance. The Ludwieg tube which produces high speed flows(the Mach number ranging 4 to 10) was designed. Especially altitude simulation at Mach 4 flow could be performed.

A Study on the Behavior of Spheroid Configuration Bobbin (회전타원체 보빈 형상의 거동에 관한 연구)

  • Kang, Seung-Hee;Ahn, Sung-Ho;Rim, One-Kwon;Kim, Hye-Ung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.717-724
    • /
    • 2010
  • The initial trajectory of a spheroid configuration bobbin for precision guidance has been investigated by analyzing its aerodynamic load and six-degree-of-freedom motion. The effects of changes in the spheroidal head configuration, flow angle and lateral center-of-gravity offset are numerically studied using the commercial software "FLUENT". A wind tunnel test is also conducted to validate the numerical scheme and to examine effect of the Reynolds number on the flow around the bobbin. It is shown that the size of the separation bubble formed on the surface decreases significantly when the Reynolds number is varied between 110,000 and 140,000. At a zero flow angle, an oblate spheroidal head shows relatively moderate rotation while a prolate spheroidal head shows rapid rotation. The bobbin with a spherical head shape has little effect on the flow direction; however, the oblate bobbin is sensitive to the flow angle. The roll motion of the bobbin is greatly influenced by the lateral center-of-gravity offset and maximum dispersion is observed at half of the radius.

Evaluation of Rectangular Section Flutter Derivatives by CFD (CFD에 의한 사각단면의 플러터계수 산출)

  • Min, Won;Lee, Yong Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.6 s.67
    • /
    • pp.693-700
    • /
    • 2003
  • An evaluation method for flutter derivatives is proposed, using indicial functions of structural members produced by Computational Fluid Dynamics (CFD). Flutter derivatives are obtained by Fourier integration of indicial functions. Instead of direct simulation of oscillating objects, only the calculation of time-dependent lift and moment variations of fixed objects with constant attack angle are necessary.The Finite Element Method (FEM) is developed as a tool for the numerical method. For two rectangular sections having different aspect ratios, the numerical analysis and wind tunnel test are carried out to inspect the adequacy of this study. The results proved to be good, and they could be used for a preliminary design.

Investigation on the Turbulent Flow Field Characteristics of a Gun-Type Gas Burner with and without a Duct (덕트의 유무에 따른 Gun식 가스버너의 난류유동장 특성 고찰)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.17-24
    • /
    • 2006
  • The turbulent flow field characteristics of a gun-type gas burner with and without a duct were investigated under the isothermal condition of non-combustion. Vectors and mean velocities were measured by hot-wire anemometer system with an X-type hot-wire probe in this paper. The turbulent flow field with a duct seems to cause a counter-clockwise recirculation flow from downstream to upstream due to the unbalance of static pressure between a main jet flow and a duct wall. Moreover, the recirculation flow seems to expand the main jet flow to the radial and to shorten it to the axial. Therefore, the turbulent flow field with a duct increases a radial momentum but decreases a axial momentum. As a result, an axial mean velocity component with a duct above the downstream range of about X/R=1.5 forms a smaller magnitude than that without a duct in the inner part of a burner, but it shows the opposite trend in the outer part.

  • PDF

Effects of Slits and Swirl Vanes on the Main Flow Fields of a Gun-Type Gas Swirl Burner (슬릿과 스월베인이 Gun식 가스버너의 주 유동장에 미치는 영향)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.6 no.4
    • /
    • pp.23-29
    • /
    • 2002
  • This paper is studied to investigate the effect of slits and swirl vanes on the main flow fields of a gun-type gas burner through X-Y plane and Y-Z plane respectively by using X-probe from hot-wire anemometer system. This experiment was carried out with flow rate $450{\ell}/min$ in respective burner models installed in the test section of a subsonic wind tunnel. The burner models with only slits and only swirl vanes respectively were made by modifying original gun-type gas burner. The fast jet flow spurted from slits played a role such as an air-curtain because it encircled rotational flow by swirl vanes and drives mixed main flow to axial direction. As a result, the gun-type gas burner had a wider flow range up to about Y/R=1.5 deviated from slits and maintains a comparatively large velocity in the central part of burner within the range of about X/R=2.5. Therefore, it was very desirable that swirl vanes were installed within slits in gun-type gas burner in order to control the main flow fields effectively.

  • PDF

A passive control on shock oscillations in a supersonic diffuser (초음속 디퓨져에서 발생하는 충격파 진도의 피동제어)

  • Kim, Heuy-Dong;Matsuo, Kazuyasu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.3
    • /
    • pp.1083-1095
    • /
    • 1996
  • Shock wave/boundary layer interaction frequently causes the shock wave to oscillate violently and thus the global flow field to unstabilize. In order to stabilize the shock wave system in the diffuser of a supersonic wind tunnel, the present study attempted to control the shock oscillations by using a passive control. A porous wall with the porosity of 19.6% was mounted on a shallow cavity. Experiment was made by means of schlieren optical observation and wall pressure measurements. The flow Mach number just upstream the shock system and Reynolds number based on the turbulent boundary layer thickness were 2.1 and 1.8 * 10$\^$6/, respectively. The results show that the present passive control method on the shock wave/boundary layer interaction in the supersonic diffuser can significantly suppress the oscillations of shock system, especially when the shock system locates at the porous wall.

Wind-Resistant Safety Reviews of Cable-Stayed Bridge by Wind Tunnel Tests (풍동실험을 통한 사장교의 내풍 안전성 검토)

  • Huh, Taik-Nyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.4_2
    • /
    • pp.637-644
    • /
    • 2020
  • Because suicide accidents sometimes were happened in grand bridges over rivers or sea water recently, it will be necessary that prevention measures be made preparation in advance from now on. Additional safety facilities must be needed in addition to existing safety facilities in such a way as this prevention measure. In order to make cable-stayed bridge safe on wind for additional safety facilities, main girder models with added safety facilities for wind-tunnel tests was made, and wind tunnel experiments was carried out to measure aerodynamic force coefficients. Also, wind-resistant analyses of 3D cable-stayed bridge were performed on the basis of wind-tunnel test results. From the wind experiments, force coefficients of main girder with added safety facilities were assessed, and it is known that there are little possibility of galloping and rotation of steel main girder. Finally, from the wind resistant analyses, it was concluded that wind-resistant safety of cable-stayed bridge was secured on wind speed 60.6m/sec.

New Treatment of High-Pressure Exhaust Gas Flows Using Shock-Wave Confinement (충격파 감금법을 이용한 배기가스 유동의 새로운 처리법에 관한 연구)

  • ;;;K.Matsuo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.2 no.1
    • /
    • pp.78-87
    • /
    • 1998
  • In many industrial practices it is an important problem to discharge a high-pressure exhaust gas to the atmosphere without generating a loud noise and much vibration. This may be achieved by confining a shock system inside the exhaust duct with a double orifice. The objective of the current work is to develop a new treatment method for the high-pressure exhaust gases. A theoretical analysis was applied to one-dimensional, steady. viscous, compressible model flowfield, and an experiment was performed using a shock tunnel facility. The results showed that the total pressure drop increases with a decrease of the opening area of the upstream orifice, and the shock confinement to the duct is possible by decreasing the opening area of the downstream orifice.

  • PDF

Forced Ignition Characteristics with a Plasma Jet Torch in Supersonic Flow (초음속 유동장 내 플라즈마 토치를 사용한 강제 점화 특성)

  • Kim, Chae-Hyoung;Jeung, In-Secuk;Choi, Byoung-Il;Kouchi, Toshinori;Masuya, Goro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.363-366
    • /
    • 2011
  • Mixing and combustion experiments with a vent slot mixer were performed in Mach 2 supersonic wind tunnel. Helium and hydrogen gases each were used for the mixing and the combustion experiment with a plasma jet (PJ) torch. The vent slot mixer holds plenty of fuel in the downstream mixing region, even though the fuel is transversely injected. In case of the combustion, the injected fuel is ignited by the PJ torch, and then unburned mixture is burned by shock-induced combustion downstream. Thermal choking in the combustor leads to shock trains in the isolator, causing the unstable combustion.

  • PDF

Internal Flow characteristics of Ramjet Supersonic Intake (램제트 초음속 흡입구 내부 유동 특성)

  • Lee, Hyoung-Jin;Kim, Sei-Hwan;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.331-334
    • /
    • 2011
  • The performance of ramjet engine is closely associated with a supersonic intake. In this study, experiments and computational simulations were conducted to observe the internal flow characteristics of the supersonic intake. The supersonic intake which have self-starting characteristics was designed and manufactured. The flow characteristics was analyzed from the experimental results using the supersonic wind tunnel testing and computational results using RANS equation and Menter's SST turbulence model. The detailed visualization results were suggested for the pseudo-shock wave of stable operations and for the inlet buzz phenomenon of unstable operations.

  • PDF