• Title/Summary/Keyword: 破壞荷重 鋼纖維

Search Result 43, Processing Time 0.024 seconds

Face Damage Characteristic of Steel Fiber-Reinforced Concrete Panels under High-Velocity Globular Projectile Impact (구형 비상체에 의한 충격하중을 받는 강섬유보강 콘크리트 패널의 손상특성)

  • Jang, Seok-Joon;Son, Seok-Kwon;Kim, Yong-Hwan;Kim, Gyu-Yong;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.411-418
    • /
    • 2015
  • This paper investigates the effects of fiber volume fraction and panel thickness on face damage characteristics of steel fiber-reinforced concrete (SFRC) under high-velocity globular projectile impact. The target specimens were prepared with $200{\times}200mm$ prismatic panels with thickness of 30 or 50 mm. All panels were subjected to the impact of a steel projectile with a diameter of 20 mm and velocity of 350 m/s. Specifically, this paper explores the correlation between mechanical properties and face damage characteristics of SFRC panels with different fiber volume fraction and panel thickness. The mechanical properties of SFRC considered in this study included compressive strength, modulus of rupture, and toughness. Test results indicated that the addition of steel fiber significantly improve the impact resistance of conventional concrete panel. The front face damage of SFRC panels decreased with increasing the compressive toughness and rear face damage decreased as the modulus of rupture and flexural toughness increased. To evaluate the damage response of SFRC panels under high-velocity impact, finite element analysis conducted using ABAQUS/Explicit commercial program. The predicted face damage of SFRC panels based on simulation shows well agreement with the experimental result in similar failure mode.

Evaluating Local Damages and Blast Resistance of RC Slabs Subjected to Contact Detonation (접촉 폭발 하중을 받는 RC 슬래브의 국부 손상 및 내폭 성능 평가)

  • Li, Ling;Lee, Jin Young;Min, Kyung Hwan;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.1
    • /
    • pp.37-45
    • /
    • 2013
  • In this study, the resistance of various reinforced concrete (RC) slabs subjected to contact detonation was assessed. In order to enhance the blast resistance, fibers and external FRP sheets were reinforced to RC slabs. In the experiment, the $2,000{\times}1,000{\times}100mm$ sized RC slabs were fabricated using normal concrete (NC), steel fiber reinforced concrete (SFRC), polyvinyl alcohol fiber reinforced cementitious composite (PVA FRCC), and ultra-high performance cementitious composites (UHPCC). The damage levels of RC slabs subjected to contact detonation were evaluated by measuring the diameter and depth of crater, spall and breach. The experimental results were compared to the analyzed data using LS-DYNA program and three different prediction equations. The diameter and depth of crater, spall and breach were able to be predicted using LS-DYNA program approximately. The damage process of RC slabs under blast load was also well expressed. Three prediction equations suggested by other researchers had limitations to apply in terms of empirical approaches, therefore it needs further research to set more analytical considerations.

A Study on the Flexural Toughness Characteristics of Steel Fiber Reinforced Concrete (강섬유보강 콘크리트의 휨인성 특성에 관한 연구)

  • Park, Sung-Soo;Lee, Jeong-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.203-210
    • /
    • 2004
  • This study reviewed various current methods of evaluating the toughness of steel fiber reinforced concrete specimens and criticized the use of various multiples of first-crack deflection to define toughness indices. The load-CMOD curve to determine toughness, instead of load-deflection curve, was used. The notched steel fiber reinforced concrete specimens With different water/cement ratio(0 35, 0.40, 0.45, 0 50) and fiber volume content(0.0%, 0 5%, 1 0%, 1.5%) were tested under third point bending.

Ultimate Shear Capacity of Prestressed Girder of Ultra High Performance Fiber Reinforced Concrete (초고강도 섬유보강 콘크리트 프리스트레스트 거더의 극한 전단력)

  • Han, Sang-Mook;Wu, Xiang-Guo
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.51-58
    • /
    • 2008
  • This study is to investigate the ultimate shear load of prestressed girder made of Ultra High Performance Fiber Reinforced Concrete (UHPFRC). Nine girders were tested until failure in shear. An analytical model to predict the ultimate shear load was formulated based on the Two Bounds Theory. A fiber reinforcing model was constituted based on the random assumption of steel fiber uniform distribution. The predicted values were compared with the conventional predictions and the test results. The proposed equations for computing the ultimate shear strength can be used for the ultimate failure status analysis, which could also be utilized for numerical limit analysis of prestressed UHPFRC girder. The established fiber reinforcing theoretical model can also be a reference for micro-mechanics analysis of UHPFRC.

High-Velocity Impact Experiment on Impact Resistance of Steel Fiber-Reinforced Concrete Panels with Wire Mesh (와이어매쉬와 강섬유로 보강된 콘크리트 패널의 내충격성 규명을 위한 고속충격실험)

  • Kim, Sang-Hee;Hong, Sung-Gul;Yun, Hyun-Do;Kim, Gyu-Yong;Kang, Thomas H.K.
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.103-113
    • /
    • 2015
  • This paper studies impact performance of wire-mesh and steel fiber-reinforced concrete based on high-velocity impact experiments using hard spherical balls. In this experimental study, panel specimens were tested with various parameters such as steel fiber volume fraction, presence/absence of wire mesh, panel thickness, impact velocity, and aggregate size for the comparison of impact resistance performance for each specimen. While improvement of the impact resistance for reducing the penetration depth is barely affected with steel fiber volume fraction, the impact resistance to scabbing and perforation is improved substantially. This was due to the fact that the steel fiber had bridging effects in concrete matrix. The wire mesh helped minimizing the crater diameter of front and back face and enhanced the impact resistance to scabbing and perforation; however, the wire mesh did not affect the penetration depth. The wire mesh also reduced the bending deformation of the specimen with wire mesh, though some specimens had splitting bond failure on the rear face. Additionally, use of 20 mm aggregates is superior to 8 mm aggregates in terms of penetration depth, but for reducing the crater diameter on front and back faces, the use of 8 mm aggregates would be more efficient.

A Study on the Support System of Large Caverns Under High Initial Stress (과지압 하에 있는 대규모 지하공동의 지보 시스템에 관한 연구)

  • 박연준;유광호;최영태;김재용
    • Tunnel and Underground Space
    • /
    • v.14 no.2
    • /
    • pp.154-166
    • /
    • 2004
  • A numerical stability analysis was conducted on the large oil storage caverns excavated in a rock mass under high initial horizonal stress. The behaviors of the surrounding rock mass, rockbolts, and shotcrete were analyzedr and stability of the support members were assessed. For a proper support system design, the effect of the modelling technique, cavern shape and rockbolt length on the stability of the cavern was investigated. Results show that installation timing of supports and the change in cavern shape due to stepwise excavation affect the stress induced in support members. Also found was desperate need for a numerical technique which can properly reflect the behavior of the steel fiber reinforced shotcrete.

Effect of Hooked-end Steel Fiber Volume Fraction and Aspect Ratio on Flexural and Compressive Properties of Concrete (후크형 강섬유 혼입율 및 형상비에 따른 콘크리트의 휨 및 압축 특성)

  • Kim, Dong-Hui;Jang, Seok-Joon;Kim, Sun-Woo;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.40-47
    • /
    • 2021
  • This study investigates the influence of hooked-end steel fiber volume fraction and aspect ratio on the mechanical properties, such as compressive and flexural performance, of concrete with specified compressive strength of 30MPa. Three types of hooked-end steel fibers with aspect ratios of 64, 67 and 80 were selected. The flexural tests of steel fiber reinforced concrete (SFRC) prismatic specimens were conducted according to EN 14651. The compressive performance of SFRC with different volume fractions (0.25, 0.50 and 0.75%) were evaluated through standard compressive strength test method (KS F 2405). Experimental results indicated that the flexural strength, flexural toughness, fracture energy of concrete were improved as steel fiber volume fraction increases but there is no unique relationship between steel fiber volume fraction and compressive performance. The flexural and compressive properties of concrete incorporating hooked-end steel fiber with aspect ratio of 64 and 80 are a little better than those of SFRC with aspect ratio of 67. For each SFRC mixture used in the study, the residual flexural tensile strength ratio defined in Model Code 2010 was more than the limit value to be able to substitute rebar or welded mesh in structural members with the fiber reinforcement.

A Numerical Study on the Behavior of Steel Fiber Reinforced Shotcrete in Consideration of Flexural Toughness (휨인성을 고려한 강섬유보강 숏크리트 거동의 수치해석적 연구)

  • Cho, Byoung-Ouk;You, Kwang-Ho;Kim, Su-Man;Lim, Doo-Chul;Lee, Sang-Don;Park, Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.411-427
    • /
    • 2007
  • Reliability in tunnel analysis is necessary to accomplish technically sound design and economical construction. For this, a thorough understanding of the construction procedure including the ground-support interaction has to be obtained. This paper describes a proper modelling technique to simulate the behavior of the steel fiber reinforced shotcrete (SFRS) which maintain the supporting capability in post-failure regime. The additional supporting effect of the steel support was also verified by 3-D analyses and a new load distribution factor were proposed. The use of the plastic moment limit (PML) alone can eliminate the occurrence of the awkwardly high tensile stress in the shotcrete and can successfully model the post-peak ductile behavior of the SFRS. But with this method, moment is limited whenever the stress caused by moment reaches tensile strength of the shotcrete irrespective of the stress by axial force. Therefore, it was necessary to find a more comprehensive method which can reflect the influence of the moment and axial force. This can be accomplished by the proper use of "liner element" which is the built-in model in FLAC. In this model, the peak and residual strength as well as the uniaxial compressive strength of the SFRS can be specified. Analyses were conducted with these two models on the 2-lane road tunnels excavated in class IV and V rock mass and results were compared with the conventional elastic beam model. Results showed that both models can reflect the fracture toughness of the SFRS which could not be accomplished by the elastic beam model.

Analysis of Behaviors of Concrete Strengthened with FRP Sheets and Steel Fibers Under Low-Velocity Impact Loading (저속 충격하중에서의 FRP Sheet 및 강섬유 보강 콘크리트의 거동 해석)

  • Lee, Jin Young;Kim, Mi Hye;Min, Kyung Hwan;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.155-164
    • /
    • 2011
  • In the case of impact loading test, measurement of the test data has difficulties due to fast loading velocity. In addition, the dynamic behaviors of specimens are distorted by ignoring local fracture. In this study, therefore, finite element analysis which considers local fracture and strain rate effect on impact load was performed by using LS-DYNA, an explicit analysis program. The one-way and two-way specimens strengthened with FRP Sheets and steel fibers were considered as analysis models. The results showed that the impact resistance of steel fiber reinforced concrete (SFRC) and ultra high performance concrete (UHPC) was enhanced. In the case of specimens strengthened with FRP Sheets, GFRP was superior to CFRP in the performance of impact resistance, and there was little effect of the FRP Sheet orientation. The reliability of this analysis model was verified by comparing with previous experimental results.

Effect of Induction of Electromagnetic Field by Partitioned Coils on Fracture Energy of Steel Fiber Reinforced Mortar (분할된 코일을 이용한 전자기장 유도가 강섬유보강몰탈의 파괴에너지에 미치는 영향)

  • Moon, Do-Young;Mukharromah, Nur Indah
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.3
    • /
    • pp.219-226
    • /
    • 2022
  • In this experimental study, the effect of continuously changing the position of electromagnetic force using several coils and a relay switch on fracture energy was investigated. Normal mortar and steel slag mortar specimens in which 50 % and 100 % of sand was replaced with steel slag were cast and exposed to electromagnetic field. The electric field was induced by one coil without a relay switch as an existing method and by partitioning the coil and continuously changing the position using a relay switch. The fracture energy was calculated from the load-vertical displacement curve obtained from the experiment and compared with each other. As a result of the experiment, it was confirmed that the method of partitioning the coil and changing the position of electromagnetic force by using a relay switch is effective in increasing the fracture energy even if the same amount of power is used.