• Title/Summary/Keyword: 砂質土

Search Result 563, Processing Time 0.027 seconds

The Numerical Analysis on the Behaviour of Combined Sheet Pile in the Reclaimed Ground Mixed by Sandy Soil and Clayey Soil (사질토와 점성토가 혼재하는 해안 매립지반에서 조합형 Sheet Pile의 거동에 관한 해석적 연구)

  • Kim, Byung-Il;Kim, Young-Sun;Han, Sang-Jae;Park, Eon-Sang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.3
    • /
    • pp.9-21
    • /
    • 2020
  • In this study, the design method of the combined sheet pile was considered in the coastal landfill where sandy and clayey soils are mixed, and the behavior in excavation was analyzed. It was confirmed from the elasto-plastic analysis that the predicted behavior of the temporary facilities of earth retaining differs according to the type of the combined sheet pile method (Built up, Interlocking, Welding) and the analysis method (soldier pile method, continuous wall method). In the case of sheet pile member force, the results of the continuous wall analysis method predicted the most conservative results. When the stress ratio (calculation/allowance) of each member was analyzed based on the maximum member force of the combined sheet pile method, the maximum value was obtained for bending moment in the side pile and combined stress in the case of the strut. As a result of finite element analysis, the member force of the side pile was the largest in the short-term effective stress analysis condition, while the compressive force of the strut was large in the consolidation analysis. When comparing the results of the elasto-plastic analysis and the finite element analysis, the shear force of the side pile and the axial force of the strut were greatly evaluated in the elasto-plastic analysis, and the bending moment of the side pile was the largest in the short-term effective stress condition of the finite element analysis. In addition, the displacement of the side pile was predicted to be greater in the finite element analysis than in the elasto-plastic analysis.

Characteristics for Horizontal Displacement of Temporary Earth Retaining Wall on Marine Sediments (해성퇴적층 지반의 가시설토류벽 수평변위 특성에 관한 연구)

  • Kim, Younghun;Kim, Chanki;Choi, Sungyeol;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.37-45
    • /
    • 2010
  • In this study, the value of numerical analysis was compared to the measured value of horizontal displacement during construction. And also, the value was reviewed by comparing with numbers calculated by SUNEX program and EXCAV program. When comparing to suggested values of the maximum horizontal displacement in clayey layer, the displacement caused by the IPS system is larger than one by the Strut girder type system. When comparing the result of SUNEX program to that of EXCAV program, the SUNEX program interprets larger value. It could be concluded the result of SUNEX program is closer to the suggested value, 0.5%H, in clayey layer. The result also shows that the internal friction angle(${\Phi}$) is the key factor of developing horizontal displacement rather than type of supporting systems or materials. That means small horizontal displacement occurs in sandy layer having large value of the internal friction angle, whereas vice versa in clayey layer having small value of the internal friction angle. Therefore, the result of EXCAV program is larger in sandy layer and vice versa in clayey layer. When comparing the measured result during construction to the value of 0.5%H, the measured result is 1.4 times greater than the value of 0.5%H. In contrast, the result of SUNEX program is only 78.1% of the value of 0.5%H and the one of EXCAV program is just 18.1% of that. This result shows the calculated value by SUNEX or EXCAV program is smaller than the observed value by measuring during construction. In result, more careful attention is needed to determine the behavior of the ground. To better analyze the behavior of the ground, more precise finite element method is required.

Liquefaction Analysis at Multi-Layered Ground Considering Viscoplastic Effect of Clay (점성토의 점소성 효과를 고려한 다층지반의 액상화 해석)

  • Yoon, Yong-Sun;Lee, Jae-Deuk;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.5
    • /
    • pp.59-69
    • /
    • 2013
  • 본 연구에서는 동적 점탄-점소성 구성식에 기초한 다층지반의 1차원 액상화 해석을 수행하였다. 일본 고베 포트아일랜드에서 발생한 1995 Hyogoken Nanbu 지진에 대하여 지반 모델링을 하였으며, 사질토 지반에는 탄소성 모델을, 점성토 지반에는 점탄-점소성 모델 및 탄-점소성 모델을 각각 적용하였다. 본 연구 결과, 모델 지반의 경우 지표 10 m 아래를 전후하여 액상화가 발생하였으며 액상화가 발생한 지반을 통과하는 지진파는 감쇠특성을 나타내고 이 때 전단변형률을 크게 증가시켰다. 또한, 대변형률 영역에서의 점성토의 동적거동 해석에서는 점소성 거동특성이 지배적이므로 점소성 모델의 적용이 중요함을 알 수 있었다. 한편 동적 점탄-점소성 구성모델은 대변형률 영역에서 점성토의 소성변형을 유발하는 대형 지진 발생시 점성토의 증폭 및 감쇠특성 분석에 적용 가능한 모델임을 확인하였다.

Evaluation of the Moment Bearing Capacity of Offshore Bucket Platforms in Sand (사질토 지반에 설치된 해상 버켓작업대의 모멘트 지지력 산정)

  • Vicent, Ssenyondo;Gu, Kyo-Young;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.101-109
    • /
    • 2019
  • The bucket platform is a new structure suitable for construction of offshore bridge foundations and providing the temporary support for equipments and labour. The platform can be subjected to moment loading due to the eccentric loading or the horizontal load by wave and wind. Therefore, a three dimensional finite element analysis was performed to evaluate the moment bearing capacity of the bucket platform, varying soil density, the diameter and embedment depth of the bucket. The numerical modeling was verified and compared with the moment-rotation curve from a field loading test. The uniform sandy ground was assumed and the moment load was applied at the top plate of the platform, increasing bucket rotation. The moment-rotation relations were analyzed to determine the moment capacity, which was influenced by the embedment depth and diameter of the bucket. Finally, a preliminary design equation was suggested to estimate the moment bearing capacity.

Assessment of Response Spectrum by Dynamic Centrifuge Test for the Pile Foundation into the Sand (동적 원심모형실험에 의한 사질토에 근입된 말뚝지지 기초의 응답 스펙트럼 분석)

  • Park, Yong-Boo;Park, Jong-Bae;Kim, Sang-Yeon;Kim, Dong-Soo
    • Land and Housing Review
    • /
    • v.5 no.1
    • /
    • pp.35-40
    • /
    • 2014
  • Site coefficient and amplification factor of current domestic Seismic Design Code (KBC-2009) have no consideration for the domestic ground condition in which the base rock is normally placed within 30m form the surface. Accordingly, in this study dynamic centrifugal test and analysis for pile foundation into sand and upper structure were achieved. and the response spectrums of free surface and basement were compared with each other. Within the period 1 sec., the measured spectral acceleration of free surface and basement was bigger than the design spectral acceleration of SC and SD site. However the measured spectral acceleration of free surface and basement for the period over 1.5 sec. was smaller than the design spectral acceleration of SC site. There was no severe difference of spectral acceleration according to the upper structure, embedded depth of foundation and free surface conditions. Consequently, normal domestic apartment housing for the period range over 1.5sec. could be design more economically applying these test result.

Investigation of Factors Affecting Vibration Induced Settlement Using Multifactorial Experimental Design (다변수 실험계획법을 이용한 진동침하 영향 요소 연구)

  • ;Drabkin Sergey
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.61-74
    • /
    • 1996
  • Settlement induced by low -level vibration on granular soils is too complect to predict with one or two fact ors. Factors affecting vibration induced settlement were investigated, and a settlement prediction model on granular soils was developed using multifactorial experimental design(MED). Factors such as vibration amplitude, deviatoric stress, confining pressure, soil gradation, duration of vibration, moisture content, and relative density were considered in this study. A special vibratory frame was designed to shake a soil specimen within a triaxial cell. MED allowed the authors to investigate the effect of many factors using a relatively small number of experiments. The most significant factors on settlement were vibrati on amplitued, confining pressure, and defiatoric stress. Comparable settlement was occurred even under low-level vibration ranging from 2.5 to 18mm1sec, and stress am sotropy was found to be an important factor on settlement.

  • PDF

Earth Pressure on the Cylindrical Wall in Cohesionless Soils (사질토 지반의 원형수직구에 설치된 흙막이벽에 작용하는 토압)

  • 천병식;신영완
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.175-187
    • /
    • 2003
  • The earth pressure acting on the cylindrical retaining wall in cohesionless soils is different from that on the retaining wall in plane strain condition due to three dimensional arching effect. Accurate estimation of earth pressure is required for the design of vertical cylindrical retaining wall. Failure modes of the ground behind vertical shaft are dependent on ground in-situ stress conditions. Failure modes are actually divided into two modes of cylindrical failure mode and funnel-shaped mode with truncated cone surface. Several researchers have attempted to estimate the earth pressure on cylindrical wall for each failure mode, but they have some limitations. In this paper, several equations for estimating the earth pressure on cylindrical wall in cohesionless soils are investigated and new formulations for two failure modes are suggested. It rationally takes into account the overburden pressure, wall friction, and force equilibriums on sliding surface.

Earth Pressure Acting on the Cylindrical Retaining Wall of a Shaft in Cohesionless Soils : Study on the Application by Model Test (사질토 지반의 원형수직구에 설치된 흙막이벽에 작용하는 토압 : 적용성 연구)

  • 천병식;신영완;문경선
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.75-88
    • /
    • 2004
  • It is known that the earth pressure acting on the cylindrical retaining wall in cohesionless soils is small than that acting on the retaining wall in plane strain condition due to three dimensional arching effect. In this study, the earth pressure equation considering the earth pressure decrease by horizontal and vertical arching effects, overburden, wall friction, and failure surface slope is proposed. For the purpose of verifying the applicability of proposed equation, model test is performed with apparatuses that can control wall displacement, wall friction, and wall shape ratio. Influence of each factor on the active earth pressure acting on the cylindrical retaining wall is analyzed according to the model test in constant wall displacement condition. The comparison of calculated results with measured values shows that the proposed equations satisfactorily predict the earth pressure distribution on the cylindrical retaining wall.

Analysis of Piled Raft Interactions in Sand with Centrifuge Test (원심모형실험을 통한 사질토 지반에서의 말뚝지지 전면기초 상호작용 분석)

  • Park, Dong-Gyu;Choi, Kyu-Jin;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.27-40
    • /
    • 2012
  • In the design of a piled raft, the axial resistance is offered by the raft and group piles acting on the same supporting ground soils. As a consequence, pile - soil - raft and pile - soil interactions, occurring by stress and displacement duplication with pile and raft loading conditions, act as a key element changing resistances of the raft and group piles. In this study, a series of centrifuge model tests have been performed to compare the axial behavior of group pile and raft with that of a piled raft (having 16 component piles with an array of $4{\times}4$) in sands with different relative densities. The test results revealed that the increase of settlement resistance occurs separately with settlement by group pile - soil interactions. The axial resistance of group piles (at piled raft) increases by group pile - raft (pile cap) interactions and that of raft (at piled raft) decreases by group pile - raft (pile cap) interactions.

The Experimental Study on the Long-term Creep Settlements of Nam-Hae Sands (남해안 모래의 장기 크리프 침하 특성에 관한 실험적 연구)

  • Park, Eonsang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.9
    • /
    • pp.21-28
    • /
    • 2018
  • In this study, a standard consolidation test (Oedometer) was performed on the relative density of sand in the south coast to evaluate long-term creep settlement characteristics. Experimental results show that the cumulative settlement at the final loading stage decreases as the relative density increases and the variation of the void ratio decreases. As a result of analyzing the settlement rate of long-term creep of sand, creep settlement of 4.7~11.0% occurred depending on relative density with respect to total settlement. The creep parameter, Beta, of Schmertmann et al. (1978) was estimated to be 0.17~0.40 (average 0.21), and it tended to converge to a certain value when the load step becomes more than a certain level. It was found that there is no significant difference in the creep parameter depending on the layer thickness, and it was confirmed that the creep parameter could be applied regardless of the field layer thickness.