Journal of Korea Society of Industrial Information Systems
/
v.15
no.2
/
pp.31-39
/
2010
VoD(Video-on-Demand) servers have to provide timely processing guarantees for continuous media and reduce the storage and bandwidth requirements for continuous media. The compression techniques make the bit rates of compressed video data significantly variable from frame to frame. A VoD system should be able to provide the client with interactive operations such as fast forward and fast rewind in addition to normal playback of movie. However, interactive operations require additional resources such as storage space, disk bandwidth, memory and network bandwidth. In a stored video application such as VoD system, it is possible that a priori disk access patterns can be used to reserve the system resources in advance. In addition, clients of VoD server spend most of their time in playback mode and the period of time spent in interactive mode is relatively small. In this paper, I present the new buffer management scheme that provides efficient support for interactive operations in a VoD server using variable bit rate continuous media. Simulation results show that our strategy achieves 34% increase of the number of accepted clients over the LRU strategy.
To enhance immersive experiences for metaverse environements, background music is often used. However, the background music is mostly pre-matched and repeated which might occur a distractive experience to users as it does not align well with rapidly changing user-interactive contents. Thus, we implemented a system to provide a more immersive metaverse conversation experience by 1) developing a regression neural network that extracts emotions from an utterance using KEMDy20, the Korean multimodal emotion dataset 2) selecting music corresponding to the extracted emotions from an utterance by the DEAM dataset where music is tagged with arousal-valence levels 3) combining it with a virtual space where users can have a real-time conversation with avatars.
Recent deep learning-based research shows excellent performance in most natural language processing (NLP) fields with pre-trained language models. In particular, the auto-encoder-based language model proves its excellent performance and usefulness in various fields of Korean language understanding. However, the decoder-based Korean generative model even suffers from generating simple sentences. Also, there is few detailed research and data for the field of conversation where generative models are most commonly utilized. Therefore, this paper constructs multi-turn dialogue data for a Korean generative model. In addition, we compare and analyze the performance by improving the dialogue ability of the generative model through transfer learning. In addition, we propose a method of supplementing the insufficient dialogue generation ability of the model by extracting recommended response candidates from external knowledge information through a retrival model.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2022.10a
/
pp.84-86
/
2022
Task-oriented chatbots prevail in various filed with the artificial intelligent dialogue system. The need for chatbots in customer services is growing, especially in education businesses given that there are many user inquiries and consultation requests. However, current dialogue systems only function as simple reactions or predetermined and frequently used actions. Meanwhile, the research about customized recommendation systems through artificial intelligence is very active with a wide variety of educational content. Although a dialogue system and a recommendation system is a core element in this domain, it has a limitation in that it is being conducted separately. Therefore, we present a study on a recommendation system that can recommend user-customized lectures combined with a dialogue system. With this combination, our system can respond to additional functions beyond these limitations. Through our research, we expect that work efficiency and user satisfaction will be improved by applying chatbots in education domains that are becoming more diversified and personalized.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.24
no.3
/
pp.157-162
/
2024
This study was conducted to implement Joseon Dynasty conversational style using the ChatGPT API to enhance the immersion of games set in the Joseon era. The research focuses on interactions between middle-class players and other classes. Two methods were employed: learning the dialogues from historical dramas set in the Joseon Dynasty and learning the sentence endings typical of the period. The method of learning sentence endings was rated higher based on self-evaluation criteria. Reflecting this, prompts were constructed to represent NPC dialogues in the game settings of the Joseon era. Additionally, a method was proposed for creating various NPC prompts using prompt combination techniques. This study can serve as a reference for NPC dialogue creation in games set in the Joseon Dynasty.
This paper discusses the use of GPT and GPT API for prompt engineering in the development of the interactive smart device lock screen application "Smart Lock," aimed at enhancing literacy among young children and lower-grade elementary and middle school students during critical language development periods. In an era where media usage via smartphones is widespread among children, smartphone-based media is often cited as a primary cause of declining literacy. This study proposes an application that simulates conversations with parents as a tool for improving literacy, providing an environment conducive to literacy enhancement through smartphone use. Generative AI GPT was employed to create literacy-improving problems. Using pre-generated data, situational dialogues with parents were presented, and prompt engineering was utilized to generate questions for the application. The response quality was improved through parameter tuning and function calling processes. This study investigates the potential of literacy improvement education using generative AI through the development process of interactive applications.
With the breakthrough of speech recognition technology, conversational agents have become pervasive through smartphones and smart speakers. The recognition accuracy of speech recognition technology has developed to the level of human beings, but it still shows limitations on understanding the underlying meaning or intention of words, or understanding long conversation. Accordingly, the users experience various errors when interacting with the conversational agents, which may negatively affect the user experience. In addition, in the case of smart speakers with a voice as the main interface, the lack of feedback on system and transparency was reported as the main issue when the users using. Therefore, there is a strong need for research on how users can better understand the capability of the conversational agents and mitigate negative emotions in error situations. In this study, we applied social strategies, "forewarning" and "apology", to conversational agent and investigated how these strategies affect users' perceptions of the agent in breakdown situations. For the study, we created a series of demo videos of a user interacting with a conversational agent. After watching the demo videos, the participants were asked to evaluate how they liked and trusted the agent through an online survey. A total of 104 respondents were analyzed and found to be contrary to our expectation based on the literature study. The result showed that forewarning gave a negative impression to the user, especially the reliability of the agent. Also, apology in a breakdown situation did not affect the users' perceptions. In the following in-depth interviews, participants explained that they perceived the smart speaker as a machine rather than a human-like object, and for this reason, the social strategies did not work. These results show that the social strategies should be applied according to the perceptions that user has toward agents.
Proceedings of the Korean Information Science Society Conference
/
1999.10b
/
pp.81-83
/
1999
본 논문은 전자상거래에서 판매와 구매방법의 획일화된 검색기법을 이용한 상품의 검색 및 사용자 인터페이스를 지능형 대화 판매 에이전트를 설계함으로써 보다 편리하고 효율적인 사용자 인터페이스를 제공하는 시스템을 설계하였다. 기존 사이버 쇼핑몰에서 구매자의 검색에 의한 방식을 판매자와의 대화에 의한 검색방법으로 전환하여 구매자의 구매의욕을 증가시키고 검색에 소요되는 시간을 절약할 수 있을 뿐만 아니라 구매자 어휘를 분석하고 구매패턴을 파악하여 추가의 수요를 창출 할 수 있는 데이터를 축적하는 방법을 제시하고 많은 고객을 동일한 시간에 상대해야 하는 웹의 전자상거래 시스템에서 판매를 담당하는 에이전트를 설계하게 되었다.
Proceedings of the Korean Society of Computer Information Conference
/
2013.01a
/
pp.1-2
/
2013
본 논문에서는 안드로이드의 고질적인 문제점인 사용자 반응성 문제 해결을 위한 연구를 소개한다. 특히 여러 응용들이 동시에 수행되는 경우 대화형 응용이 다른 응용들에 밀려 원하는 만큼 CPU를 얻지 못하는 상황에서 발생하는 반응지연 문제에 초점을 맞추고 이를 극복하기 위한 연쇄적 우선순위 상승 기법을 제시한다. 이 기법은 대화형 웅용뿐만 아니라 기존 연구에서 고려하지 않은 터치 관련 이벤트 처리 스레드들과 대화형 응용의 자식 스레드들의 우선순위를 연쇄적으로 상향시킴으로써 터치에 대한 응답시간을 줄인다. 본 논문에서는 제안한 기법을 상용 스마트폰에 적용하여 유용성을 검증하였다. 실험 결과에 따르면 기존 안드로이드에 제안한 기법을 적용한 경우 평균반응시간이 기존의 31.91%로 감소하였다.
Annual Conference on Human and Language Technology
/
2017.10a
/
pp.122-124
/
2017
대화시스템이 적절한 응답을 제시해 주기 위해서는 사용자의 의도를 분석하는 것은 중요한 일이다. 사용자의 의도는 도메인에 독립적인 화행과 도메인에 종속적인 서술자의 쌍으로 나타낼 수 있다. 사용자 의도를 정확하게 분석하기 위해서는 화행과 서술자를 동시에 분석하고 대화의 문맥을 고려해야 한다. 본 논문에서 제안하는 모델은 합성곱 신경망에서 공유 계층을 이용하여 화행과 서술자간 상호작용이 반영된 발화 임베딩 모델을 학습한다. 그리고 순환 신경망을 통해 대화의 문맥을 반영하여 발화를 분석한다. 실험 결과 제안 모델이 이전 모델들 보다 높은 성능 (F1-measure로 화행에 대해 0.973, 서술자 0.919)을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.