• Title/Summary/Keyword: 因子生態

Search Result 543, Processing Time 0.029 seconds

A Study on Hydromorphology and Vegetation Features Depending on Typology of Natural Streams in Korea (국내 자연하천의 유형별 물리적 구조 및 식생 특성 연구)

  • Kim, Hyea-Ju;Shin, Beom-Kyun;Kim, Won
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.2
    • /
    • pp.215-234
    • /
    • 2014
  • The purpose of this study is to identify the type and characteristics of the domestic natural streams in order to establish a basis for stream restoration and evaluation. To this end, 95 domestic natural stream areas, which have various natural environments, were selected except for the province of island and then the characteristics of natural environment, hydromorpholoy, plant and vegetation were investigated and analyzed in each stream area. As a result, 95 stream areas were classified into total 24 types according to 3 criteria such as stream size (4 types), altitude (3 types), bed material (5 types). Depending on altitude class that is the environmental factor showing the highest correlation with each stream types, the emergence of vegetation and plant, 24 stream types were reclassified into 3 types such as lowland (altitude less than 200m), mountain (altitude from 200m to 500m), highland (altitude more than 500m), and hydromorpholoy, plant and vegetation characteristics of each stream type were compared. First, when compared to the mountain and highland streams, the typical features of lowland streams were as follows: Stream size was large but bed material size was small and there were many valley forms where flood plane were developed well. In addition, the more large stream size was, the more cross-section width variability, bars and sinuosity were in good conditions. In lowland stream, representative vegetation community was Salix koreensis community. On the other hand, when compared to the lowland streams, the typical features of mountain and highland streams were as follows: Stream size was small but bed material was coarse-grained and its size was large. Mountain and highland streams valley form where flood plane was not developed well was narrow, and sinuosity and bars development were weak. Representative vegetation communities of mountain streams were Quercus serrata -, Quercus variabilis -, Styrax japonica community and representative vegetation communities of highland streams were Pinus densiflora -, Quercus mongolica -, Fraxinus rhynchophylla community.

Rainfall and Hydrological Comparative Analysis of Water Quality Variability in Euiam Reservoir, the North-Han River, Korea (북한강 의암호의 수질 변동성에 대한 강우·수문학적 비교분석)

  • Hwang, Soon-Jin;Sim, Yeon Bo;Choi, Bong-Geun;Kim, Keonhee;Park, Chaehong;Seo, Wanbum;Park, Myung-Hwan;Lee, Su-Woong;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.29-45
    • /
    • 2017
  • This study explored spatiotemporal variability of water quality in correspondence with hydro-meteorological factors in the four stations of Euiam Reservoir located in the upstream region of the North-Han River from May 2012 to December 2015. Seasonal effect was apparent in the variation of water temperature, DO, electric conductivity and TSS during the study period. Stratification in the water column was observed in the near dam site every year and vanished between August and October. Increase of nitrogen nutrients was observed when inflowing discharge was low, while phosphorus increase was distinct both during the early season with increase of inflowing discharge and the period of severe draught persistent. Duration persisting high concentration of Chl-a (>$25mg\;m^{-3}$: the eutrophic status criterion, OECD, 1982) was 1~2 months of the whole year in 2014~2015, while it was almost 4 months in 2013. Water quality of Euiam Reservoir appeared to be affected basically by geomorphology and source of pollutants, such as longitudinally linked instream islands and Aggregate Island, inflowing urban stream, and wastewater treatment plant discharge. While inflowing discharge from the dams upstream and outflow pattern causing water level change seem to largely govern the variability of water quality in this particular system. In the process of spatiotemporal water quality change, factors related to climate (e.g. flood, typhoon, abruptly high rainfall, scorching heat of summer), hydrology (amount of flow and water level) might be attributed to water pulse, dilution, backflow, uptake, and sedimentation. This study showed that change of water quality in Euiam Reservoir was very dynamic and suggested that its effect could be delivered to downstream (Cheongpyeong and Paldang Reservoirs) through year-round discharge for hydropower generation.

Eutrophication and Freshwater Red-tide Algae on Early Impoundment Stage of Jeolgol Reservoir in the Paikryeong Island, West Sea of South Korea (백령도 절골저수지의 부영양화와 담수적조)

  • Lee, Heung-Soo;Hur, Jin;Park, Jae-Chung;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.2 s.116
    • /
    • pp.271-283
    • /
    • 2006
  • A systematic water quality survey was conducted in August, 2005 for a drinking water supply reservoir (the Jeolgol reseuoir located in an island), which is at an early stage of impoundment, to investigate the causes of water color deterioration of the reservoir and the clogging of filter beds of a water treatment plant. The reservoir shape was simple and its average depth was 5.5 m, increasing from upreservoir toward the downreservoir end near the dam. Dissolved oxygen (DO) and chloropllyll-a (chi-a) showed a large variation while water temperature had a smaller range. Transparency ranged from 0.6 to 0.9 m (average 0.7 m). The average value of turbidity was 9.3 NTU, ranging from 8.0 ${\sim}$ 12.1 NTU. The transparency and the turbidity appear to be affected by a combination of biological and non-biological factors. The poor transparency was explained by an increase of inorganic colloids and algal bloom in the reservoir. The blockage of the filter bed was attributed to the oversupply of phytoplanktons from the reservoir. The range and the average concentration of chi-a within the reservoir were 31.6 ${\sim}$ 258.9 ${\mu}g\;L^{-1}$, 123.6 ${\mu}g\;L^{-1}$ for the upper layer, and 17.0 ${\sim}$ 37.4 ${\mu}g\;L^{-1}$, 26.5 ${\mu}g\;L^{-1}$ for the bottom layer, respectively. A predominant species contributing the algal bloom was Dinophyceae, Peridinium bipes f. occultatum. The distribution of Peridinium spp. was correlated with chi-a concentrations. The standing crop of phytoplankton was highest in the upreservoir with $8.5\;{\times}\;103\;cells\;mL^{-1}$ and it decreased toward the downresevoir. Synedra of Bacillariophyceae and Microcystis aeruginosa of Cyanophyceae appeared to contribute to the algal bloom, although they are not dominated. It is mostly likely that sloped farmlands located in the watershed of the reservoir caused water quality problems because they may contain a significant amount of the nutrients originated from fertilizers. In addition, the aerators installed in the reservoir and a shortage of the inflowing water may be related to the poor water quality. A long-term monitoring and an integrated management plan for the water quality of the watersheds and the reservoir may be required to improve the water quality of the reservoir.

Evaluation of the Satellite-based Air Temperature for All Sky Conditions Using the Automated Mountain Meteorology Station (AMOS) Records: Gangwon Province Case Study (산악기상관측정보를 이용한 위성정보 기반의 전천후 기온 자료의 평가 - 강원권역을 중심으로)

  • Jang, Keunchang;Won, Myoungsoo;Yoon, Sukhee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 2017
  • Surface air temperature ($T_{air}$) is a key variable for the meteorology and climatology, and is a fundamental factor of the terrestrial ecosystem functions. Satellite remote sensing from the Moderate Resolution Imaging Spectroradiometer (MODIS) provides an opportunity to monitor the $T_{air}$. However, the several problems such as frequent cloud cover and mountainous region can result in substantial retrieval error and signal loss in MODIS $T_{air}$. In this study, satellite-based $T_{air}$ was estimated under both clear and cloudy sky conditions in Gangwon Province using Aqua MODIS07 temperature profile product (MYD07_L2) and GCOM-W1 Advanced Microwave Scanning Radiometer 2 (AMSR2) brightness temperature ($T_b$) at 37 GHz frequency, and was compared with the measurements from the Automated Mountain Meteorology Stations (AMOS). The application of ambient temperature lapse rate was performed to improve the retrieval accuracy in mountainous region, which showed the improvement of estimation accuracy approximately 4% of RMSE. A simple pixel-wise regression method combining synergetic information from MYD07_L2 $T_{air}$ and AMSR2 $T_b$ was applied to estimate surface $T_{air}$ for all sky conditions. The $T_{air}$ retrievals showed favorable agreement in comparison with AMOS data (r=0.80, RMSE=7.9K), though the underestimation was appeared in winter season. Substantial $T_{air}$ retrievals were estimated 61.4% (n=2,657) for cloudy sky conditions. The results presented in this study indicate that the satellite remote sensing can produce the surface $T_{air}$ at the complex mountainous region for all sky conditions.

Prediction of Distribution Changes of Carpinus laxiflora and C. tschonoskii Based on Climate Change Scenarios Using MaxEnt Model (MaxEnt 모델링을 이용한 기후변화 시나리오에 따른 서어나무 (Carpinus laxiflora)와 개서어나무 (C. tschonoskii)의 분포변화 예측)

  • Lee, Min-Ki;Chun, Jung-Hwa;Lee, Chang-Bae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.1
    • /
    • pp.55-67
    • /
    • 2021
  • Hornbeams (Carpinus spp.), which are widely distributed in South Korea, are recognized as one of the most abundant species at climax stage in the temperate forests. Although the distribution and vegetation structure of the C. laxiflora community have been reported, little ecological information of C. tschonoskii is available. Little effort was made to examine the distribution shift of these species under the future climate conditions. This study was conducted to predict potential shifts in the distribution of C. laxiflora and C. tschonoskii in 2050s and 2090s under the two sets of climate change scenarios, RCP4.5 and RCP8.5. The MaxEnt model was used to predict the spatial distribution of two species using the occurrence data derived from the 6th National Forest Inventory data as well as climate and topography data. It was found that the main factors for the distribution of C. laxiflora were elevation, temperature seasonality, and mean annual precipitation. The distribution of C. tschonoskii, was influenced by temperature seasonality, mean annual precipitation, and mean diurnal rang. It was projected that the total habitat area of the C. laxiflora could increase by 1.05% and 1.11% under RCP 4.5 and RCP 8.5 scenarios, respectively. It was also predicted that the distributional area of C. tschonoskii could expand under the future climate conditions. These results highlighted that the climate change would have considerable impact on the spatial distribution of C. laxiflora and C. tschonoskii. These also suggested that ecological information derived from climate change impact assessment study can be used to develop proper forest management practices in response to climate change.

A review of the mass-mortalities of sea-cage farm fishes (해상 가두리양식장 양식어류의 대량폐사에 대하여)

  • Han, Jido;Lee, Deok-Chan
    • Journal of fish pathology
    • /
    • v.35 no.1
    • /
    • pp.1-25
    • /
    • 2022
  • The aquaculture industry has developed rapidly over the last three decades and is an important industry that supplies over 15% of humans' animal protein intake; therefore, there is a need to increase production to meet the continuous demand. The fish cage farms on the southern coast (Kyengsangnam-do and Jeollanam-do) of Korea are critical resources in aquaculture because they account for approximately 90% of the national total fish cage farms by water area ratio. However, the current aquaculture environment is being gradually affected by climate change, which is a global issue, and its effects are expected to intensify in the future. Therefore, it is urgently imperative to accurately evaluate the effects of climate change on South Korean aquaculture industries and to develop social and national strategies to minimize damage to the fishing industry. The damage to fish farmed in cage farms on the southern coast is increasing annually and the leading causes are high and low water temperature and red tides, which are directly or indirectly related to climate change. At present, global warming can provide opportunities for aquaculture industrialization of fish or other novel species, with economic implications. However, despite such opportunities, the influx of new species can also cause problems such as ecological disturbances, increase in the reproduction frequency of microalgae such as red tide, increase in disease incidence, and occurrence and periods of high water temperatures in summer. The scale of farmed fish mortality is increasing due to the complex effects of these factors. Increased damages due to fish mortality not only have severe economic impacts on the aquaculture industry, but the social costs of responding to the damage and follow-up measures also increase. various active responses can reduce the mortality damage in fish farms such as improving the management skills in aquaculture, improved species breeding, efficient food management, disease prevention, proactive responses, and system-wide improvements. This review article analyzes the large-scale mortality cases occurring in fish cage farms on the southern coast of Korea and proposes measures to mitigate mortality and enhance responses to such scenarios.

Environmental Studies in the Lower Part of the Han River Vl. The Statistical Analysis of Eutrophication Factors (한강 하류의 환경학적 연구 Vl. 부영양 요인의 통계적 해석)

  • Jung, Seung-Won;Hue, Hoi-Kwon;Lee, Jin-Hwan
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.1 s.106
    • /
    • pp.78-86
    • /
    • 2004
  • In order to reveal the relationship between the concentration of chlorophyll- a and the environmental factors affecting eutrophication, the present study was biweekly conducted at G stations in the lower part of the Han river during the period from Feb. 24,2001 to Feb. 9,2002. Water temperature was changed from $0.5^{\circ}C$ to $26.4^{\circ}C$, pH was 5.77${\sim}$8.99, DO 3.15${\sim}$14,36 mg $L^{-1}$, BOD 0.90${\sim}$7.45 mg $L^{-1}$, and COD 1.16${\sim}$9.13 mg $L^{-1}$. TN and TP were ranged from 1.68${\sim}$20.96 mg $L^{-1}$, and 0.02 ${\sim}$ 1.17 mg $L^{-1}$, respectively. $NH_4\;^+$-N, $NO_3\;^-$-N, and $PO_4\;^{3-}$-P were ranged from 0.56${\sim}$3.60 mg $L^{-1}$, 0.03${\sim}$7.29 mg $L^{-1}$, and 0.002${\sim}$0.754 mg $L^{-1}$. Chlorophyll- a was extensively changed from 2.29 ${\mu}g\;L^{-1}$ to 136.28 ${\mu}g\;L^{-1}$ by month and stations. Results of nutrients indicated the eutrophic level in this area and water quality was the gradual worsening in the lower stations than those of upper stations during the period studied. The Pearson correlation analysis between the concentration of chlorophyll- a and the environmental factors indicated that BOD, COD, pH, $NH_4\;^+$-N, TP, TN, conductivity and $PO_4\;^{3-}$-P were positive correlation, but $NO_3\;^-$-N was negative. The environmental factors investigated using the principal component method could be triparted. The first factor group included conductivity, BOD, COD, TN, TP, $NH_4\;^+$-N, $PO_4\;^{3-}$-P and SS, the second WT and DO, and the third pH and $NO_3\;^-$-N. Using the stepwise regression analysis, chlorophyll- a was under the influence of conductivity, $PO_4\;^{3-}$-P, $>NO_3\;^-$-N and $NH_4\;^+$-N Chlorophyll-a = 0.3661 ${\times}$ (Conductivity) - 0.3592 ${\times}$ ($PO_4\;^{3-}$-P) - 0.3449 ${\times}$ ($NO_3\;^-$-N)+0.4362 ${\times}$ ($NH_4\;^+$-N.

Studies on the Biological Control of Pine Caterpillar (Dendrolimus spectabilis Butler) by Red Wood Ants (Formica rufa truncicola var. yessoensis Forel) (불개미를 이용한 송총의 생물적방제에 관한 연구)

  • Kim Chang Hyo;Choi Jin Sik
    • Korean journal of applied entomology
    • /
    • v.15 no.1 s.26
    • /
    • pp.7-16
    • /
    • 1976
  • In order to increase utility efficiency of red wood ants, Formica rufa truncicola var. yessonesis Forel as a resource of natural enemy of pine caterpillar, Dendrolimus spectabilis Butler, by finding out ecological and environmental factors in the habitat of red wood ants, the nest distribution and its density in habitat, plant distribution and density, stand-density of red pine, nest building and fixing plants, relative humidity of surface soil, physical and chemical natures of soil, and breeding rate were examined. The obtained results are summarized as follows: 1. The nest of red wood ants was densely distributed, in the lower-and middle top of mountain but no nest was found in the top. 2. The economical distribution of nest of habitat was estimated as $2.85/m^2$ and the lowest density as $1.93/m^2$ and these estimation lead us to confirm that pine caterpillar could be controlled. 3. The ecological characteristics of habitat seemed to be represented as higher stand-density of red pine of 10-20 years of age with large areas of eroded land under trees. The major grasses prevailing in this area were Andropogon brevifolius. Arundinella hirta, Miscanthus purpurasens, Eulia speciosa, Themeda japonica, Cymbopogon goeringii, and Eccoilpus cotulifer 4. Red wood ants seemed to build the nest by using red pine, Arundinella hirta, Miscanthus purpurascens, Themeda japonica or Cymbopogon goeringii as a fixing plant. 5. The limited point of humidity percent in habitat of red wood ants was estimated as $76\%$ during the acting period of May to September and as $72\%$ during pre-period of hibernation of October to November. 6. Soil analysis in habitating region showed higher concentration of organic matters and lower concentration of calcium and magnesium, and habitat was largely composed of silt and fine sand rather than coarse sand. 7. When the separated colony was transplanted to non-habitating red pine forest that seemed to have the similiar conditions as those of habitat, propagation and establishment of nest was possible.

  • PDF

Impact of Physical and Vegetation Patterns on Parks Environment: A Case Study of Gusan Neighborhood Park, South Korea (도심산림녹지의 식생 및 물리적 구조에 따른 숲 내부 미기상 변화 연구)

  • Kim, Jeong-Ho;Choi, Won-Jun;Lee, Sang-Hoon;Lee, Myung-Hun;Yoon, Yong-Han
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.5
    • /
    • pp.425-435
    • /
    • 2020
  • This study aims to investigate the impact of the physical structure, such as altitude, slope gradient, slope direction, and topographical structure, and the vegetation pattern, such as existing vegetation, diameter of breast height (DBH), and crown density, on climate. The analysis results showed the significant difference in relative humidity, wind speed, and solar radiation at varying altitudes, the significant difference in all climate factors except for the wind speed at varying slope gradient, and significant difference in temperature and relative humanity at varying slope direction. The topographic structures were divided into valleys, slopes, and ridges. They were found to differ in relative humidity. However, the differences between constant trends and types were found to be insignificant concerning temperature, wind speed, and solar radiation. Significant differences in temperature, relative humidity, and wind speed were recorded with changing existing vegetation. The DBH showed a significant difference in temperature, wind speed, and solar radiation. The crown density showed a significant difference in temperature and solar radiation. The result of the relationship analysis for the analysis of the effect of vegetation pattern and physical structure on the meteorological environment showed that temperature was affected by slope gradient, slope direction, DBH, and crown density. The relative humidity was correlated with the altitude, slope gradient, slope direction, and topological structure in physical structure and the existing vegetation and crow density in vegetation pattern. The wind speed was correlated with the altitude, existing vegetation, and DHB, and the solar radiation was correlated with the slope gradient, DHG, and crown density. The crown density was the most overall significant factor in temperature, relative humidity, and solar radiation, followed by the slope gradient. DBH was also found to be highly correlated with temperature and solar radiation and significantly correlated with wind speed, but there was no statistically significant correlation with relative humidity.

Geochemical Characteristics of Soil Solution from the Soil Near Mine Tailing Dumps and the Contamination Assessment in Duckum Mine (토양수의 자구화학특성에 따른 금속폐광산 광미야적장주변 토양오염평가: 덕음광산)

  • 이상훈;정주연
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.61-72
    • /
    • 2004
  • The soil samples were collected from the paddy field near the mine tailing dumps in the abandoned Duckum mine in Korea. In the laboratory, the soil solution was extracted from the soil using centrifuge, and analysed for the chemical composition. Physical and chemical soil properties were also analysed. Kaolinite is the main clay minerals in the paddy soil and the CEC value is therefore relatively low. Nearly all soil samples show enrichment in their trace elemental concentrations(Cd, Cu, Pb and Zn) compared with natural background level. Some soil samples exceed the soil remediation intervention values for Cd, Pb and Zn and target value for Cu, when compared with Dutch standard, whereas As, Ni and Cr are in normal range. Lead concentrations in some samples near the mine tailing dumps also exceed the standard for remediation act for agricultural area set by Korean soil conservation law. The trace elemental concentrations are higher in the paddy soil nearer the mine tailing dumps and lower for the samples from distance. Similar trend with distance is found for the soil solution chemistry but the decrease with distance from the mine tailing dumps are sharper than the changes in soil chemistry. Cadmium, Cu and Pb concentrations in the soil solution are very low, ranging from a tenth and hundredths to a maximum of several mg/l, whereas their concentrations in soils are highly enriched for natural background. Most of the trace elements are thought to be either removed by reduced iron sulphides or iron oxides, depending on the redox changes. Geochemical equilibrium modelling indicate the presence of solubility controlling solid phases for Cd and Pb, whereas Zn and Cu might have been controlled by adsorption/desorption processes. Although pollutants migration through solution phase are thought to be limited by adsorption onto various Fe, Mn solid phases, the pollutants exist as easily releasable fractions such as exchangeable site. In this case, the paddy soil would act as pollutant pool, which will supply to plants in situ. whenever the geochemical conditions favour.