Geochemical Characteristics of Soil Solution from the Soil Near Mine Tailing Dumps and the Contamination Assessment in Duckum Mine

토양수의 자구화학특성에 따른 금속폐광산 광미야적장주변 토양오염평가: 덕음광산

  • 이상훈 (카톨릭대학교 생명공학부 환경공학) ;
  • 정주연 (카톨릭대학교 생명공학부 환경공학)
  • Published : 2004.02.01

Abstract

The soil samples were collected from the paddy field near the mine tailing dumps in the abandoned Duckum mine in Korea. In the laboratory, the soil solution was extracted from the soil using centrifuge, and analysed for the chemical composition. Physical and chemical soil properties were also analysed. Kaolinite is the main clay minerals in the paddy soil and the CEC value is therefore relatively low. Nearly all soil samples show enrichment in their trace elemental concentrations(Cd, Cu, Pb and Zn) compared with natural background level. Some soil samples exceed the soil remediation intervention values for Cd, Pb and Zn and target value for Cu, when compared with Dutch standard, whereas As, Ni and Cr are in normal range. Lead concentrations in some samples near the mine tailing dumps also exceed the standard for remediation act for agricultural area set by Korean soil conservation law. The trace elemental concentrations are higher in the paddy soil nearer the mine tailing dumps and lower for the samples from distance. Similar trend with distance is found for the soil solution chemistry but the decrease with distance from the mine tailing dumps are sharper than the changes in soil chemistry. Cadmium, Cu and Pb concentrations in the soil solution are very low, ranging from a tenth and hundredths to a maximum of several mg/l, whereas their concentrations in soils are highly enriched for natural background. Most of the trace elements are thought to be either removed by reduced iron sulphides or iron oxides, depending on the redox changes. Geochemical equilibrium modelling indicate the presence of solubility controlling solid phases for Cd and Pb, whereas Zn and Cu might have been controlled by adsorption/desorption processes. Although pollutants migration through solution phase are thought to be limited by adsorption onto various Fe, Mn solid phases, the pollutants exist as easily releasable fractions such as exchangeable site. In this case, the paddy soil would act as pollutant pool, which will supply to plants in situ. whenever the geochemical conditions favour.

덕음광산 광미야적장과 인접한 논토양의 토양수를 채취하여 토양분석결과와 함께 오염영향을 조사하였다. 시료는 광미야적장을 기준으로 거리별로 채취하였으며 동일지점에서는 깊이별(0, 30, 50cm)로도 채취하였다. 광미야적장과 거리에 따른 원소농도변화는 토양보다 토양수에서 더 뚜렷이 나타나 토양보다 토양수에서의 반응이 더 빠름을 시사한다. 대부분의 토양시료에서 Cd, Pb, Zn, Cu등은 자연배경농도에 비하여 부화되었으나 As과 Ni은 자연농도한계를 넘지 않았다. 국내 토양환경보전법의 기준에 의하면 Pb만이 농경지 오염정화 기준을 초과하였으나 전체용출방법을 채택한 네덜란드 기준과 비교할 때 일부시료에 대해 Cd, Pb 및 Zn의 경우 intervention value를 Cu의 경우 target value를 초과하여 실제 오염영향이 더 클 수 있을 것으로 평가되었다. 토양과 토양수 모두 광미야적장 가까운 곳의 시료들에서 중금속의 농도가 높으며, 연속추출결과 중금속 농도가 높은 토양의 경우 교환 가능한 형태의 비율이 더 높아 광미에서 토양으로 인입된 오염물질들이 주로 교환가능 또는 산화가능과 같이 쉽게 재 용출될 수 있는 형태로 많이 존재함을 알 수 있었다. Cd, Cu, Pb 및 Ni 등의 중금속 원소들이 토양에서 자연농도에 비해 부화되어 있음에도 불구하고 토앙수내 농도는 일반적으로 매우 낮은 농도를 보인다. 이는 산화/환원 상태의 변화에 따라 중금속의 좋은 흡착제인 환원철 황화물 또는 산화철 등이 형성되어 토양수에 존재하는 미량원소들을 제거하기 때문인 것으로 생각된다. 토양수 중금속은 토양표면에 흡착되거나 교환 가능한 형태 등으로 제거되며 pH, Eh와 같은 지구화학조정인자들의 변화에 따라 다시 토양수로 방출되어 식물체에 흡수될 것으로 예상된다. 지구화학모델링 결과, Pb와 Cu에 대해 농도를 조정하는 고형물질이 존재하는 것으로 예측되며, 반면 Zn와 Cd은 흡/탈착에 의해 농도가 조정될 것으로 예상된다. 따라서 토양수를 통한 오염물의 이동은 표면 흡착과 침전등과 같은 반응으로 제한되어 확산범위는 상대적으로 적을 것으로 생각된다. 그러나 중금속들이 토양과 토양수 사이를 반복적으로 거치면서 주변 생태에 미치는 영향이 지속적인 면은 고려되어야 한다.

Keywords

References

  1. 자원환경지질 v.35 실내 microcosm 실험에 의한 시흥광산 및 덕음광산 주변 오염 논토양내 중금속의 지구화학적 거동 연구 김정현;문희수;안주성;김재곤;송윤구
  2. 자원환경지질 v.33 덕음광산 선광광미와 주변토양의 중금속에 대한 수평 · 수직적인 분산에 관한 연구 박영석;김진
  3. 자원연구소 보고서 광산지역 광해조사 및 대책연구 민정식;정영욱;이현주;이동남
  4. 자원환경지질 v.31 나림광산 수계의 토양과 퇴적물에 관한지구화학적 특성: 중금속 원소의 분산, 부화 및 기원 이찬희;이현구;이종창
  5. 자원환경지질 v.32 신예미 Pb-Zn-Fe 광산과 거도 Cu-Fe 광산 주변 토양, 하상물 및 하천수의 중금속 오염 전동진;전효택;전용원
  6. 자원환경지질 v.29 달성 Cu-W 광산 수계의 하상퇴적물과 자연수의 Cd, Cu, Pb 및 Zn 오염 정명채
  7. 자원환경지질 v.34 폐광산 복구지역 잔류광미로 인한 주변 지하수 · 토양 오염가능성-시흥광산 사례 정예진;이상훈
  8. 자원환경지질 v.28 시흥 Cu-Pb-Zn 광산 주변에서의 중금속 원소들의 분산 및 존재형태와 흡착처리 황호송;전효택
  9. 폐금속광산 토양오염실태 일제조사 환경부
  10. Journal of Contaminant Hydrology v.52 Modelling of closure-related geochemical evolution of groundwater at a former uranium mine Bain,J.G.;Mayer,K.U.;Blowes,D.W.;Frind,E.O.;Molson,J.W.H.;Kahnt,R.;Jenk,U. https://doi.org/10.1016/S0169-7722(01)00155-3
  11. Appl. Geochem v.5 The pore-water geochemistry and the mineralogy of the vadose zone of sulfide tailings. Waite Amulet Blowes,D.W.;Jambor,J.L. https://doi.org/10.1016/0883-2927(90)90008-S
  12. Jourtel, Quebec Appl. Geochem v.13 Geochemical, mineralogical and microbiological characterization of a sulphidebearing carbonate-rich gold-mine tailings impoundment Blowes,D.W.;Jambor,J.L.;Haanton-fong,C.J.;Lortie,L.;Gould,W.D. https://doi.org/10.1016/S0883-2927(98)00009-2
  13. Geoderma v.110 Processes driving soil solution chemistry in a flooded rice-cropped vertisol: analysis of long-time monitoring data Bolvin,P.;Favre,F.;Hammecker,C.;Maeght,J.L.;Delariviere,J.;Poussin,J.C.;Woperies,M.C.S. https://doi.org/10.1016/S0016-7061(02)00226-4
  14. Wat. Sci. Tech. v.28 Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential Calmano,W.;Hong,J.;Forstner,U.
  15. Water, Air, and Soil Poll. v.143 Metal remobilisation during resuspension of anoxic contaminated sediment: short-term laboratory study Cateno,M.;Madureira,M.J.;Vale,C. https://doi.org/10.1023/A:1022877120813
  16. Water, Air and Soil Pollution v.118 Influence of reducing conditions solubility of trace metals in contaminated soils Charlatchka,R.;Cambier,P. https://doi.org/10.1023/A:1005195920876
  17. Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH Chuan,M.C.;Shu,G.Y.;Liu,J.C.
  18. Aquatic Geochemistry v.5 Selective extraction chemistry of toxic metal sulfides from sediments Cooper,D.C.;Morse,J.W. https://doi.org/10.1023/A:1009672022351
  19. European Journal of Soil Science v.54 Soil solution concentration of Cd and Zn can be predicted with CaCl₂soil extract Degryse,F.;Broos,K.;Smolder,E.;Merckz https://doi.org/10.1046/j.1365-2389.2003.00503.x
  20. J. Environ. Qual. v.26 Environmental impacts of metal ore mining and processing: A review Dudka,S.;Adriano,D.C. https://doi.org/10.2134/jeq1997.00472425002600030003x
  21. Environ. Sci. Technol. v.10 Centrifuge extraction and chemical analysis of interstitial waters Edmunds,W.M.;Bath,A.H. https://doi.org/10.1021/es60116a002
  22. European Journal of Soil Science v.53 Iron reduction and changes in cation exchange capacity in intermittently waterlogged soil Favre,F.;Tessier,D.;Abdelmoula,M.;Genin,J.M.;Gates,W.P.;Bolvin,P. https://doi.org/10.1046/j.1365-2389.2002.00423.x
  23. European Journal of Soil Science v.46 Field-based partition coefficients for trace elements in soil solutions Gooddy,D.C.;Shand,P.;Kinniburgh,D.G.;Van Riemsdijk, W.H. https://doi.org/10.1111/j.1365-2389.1995.tb01835.x
  24. Appl. Geochem. v.13 Geochemistry of trace metals associated with reduced sulfur in freshwater sediments Huerta-Diaz,M.;Tessier,A.;Carignan,R.
  25. J. Environ Quality v.17 Aluminum and iron equilibria in soil solutions and surface waters of acid mine watersheds Karathanasis,A.D.;Evangelou,V.P.;Thompson,Y.L. https://doi.org/10.2134/jeq1988.00472425001700040003x
  26. Environ. Geochem. Health v.24 Assessment of arsenic and heavy metal contamination in the vicinity of Duckum Au-Ag mine, Korea Kim,J.Y.;Kim,K.W.;Lee,J.S.
  27. Geoderma v.113 Solid-solution equilibria of cadmium in soils Krishnamurti,G.S.R.;Naidu,R. https://doi.org/10.1016/S0016-7061(02)00313-0
  28. Methods manual Lavkulich,L.M.
  29. Appl. Geochem. v.12 Natural Weathering of Pulverised Fuel Ash and Porewater Evolution Lee,S.;Spears,D.A. https://doi.org/10.1016/S0883-2927(97)00005-X
  30. Chemical equilbria in soils Lindsay,W.L.
  31. Environmental chemistry of soils McBride,M.B.
  32. Journal of Contaminant Hydrology v.33 Thesolid-phase controls on the mobility of heavy metals at the Copper cliff tailing area McGregor,R.G.;Blowes,D.W.;Jambor,J.L.;Robertson,W.D. https://doi.org/10.1016/S0169-7722(98)00060-6
  33. Sci. Total Environ. v.158 Speciation and solubility controls of Al and Fe in minesoil solutions Monterroso,C.;Alvarez,E.;Macias,F. https://doi.org/10.1016/0048-9697(94)90042-6
  34. Water Resources investigations Report 99-4259 User's guide to PHREEQC (v.2) a computer program for speciation, batch reaction, one-dimensional transport, and inverse geochemical calculations Parkhust,D.L.;Appelo,C.A.J.
  35. Journal of Contaminant Hydrology v.17 The potential for metal release by reductive dissolution of weathered mine tailings Ribet,I.;Ptacek,C.J.;Blowes,D.W.;Jambor,J.L. https://doi.org/10.1016/0169-7722(94)00010-F
  36. Environ. Sci. Technol. v.34 Speciation and complexation of Cadmium in extracted soil solutions Sauve,S.;Norvell,W.A.;McBride,M.;Hendershot,W. https://doi.org/10.1021/es990202z
  37. Environ. Sci. Technol. v.34 Solidsolution partitioning of metals in contaminated soils: Dependence on pH, total metal burden, and organic matter Sauve,S.;Hendershot,W.;Allen,W.E. https://doi.org/10.1021/es9907764
  38. Environmental Geology v.38 Speciation and solubility relationships of Al, Cu and Fe in solutions associated with sulfuric acid leached mine waste rock Shum,M.;Lavkulich,L. https://doi.org/10.1007/s002540050401
  39. Appl. Geochem. v.15 A laboratory evaluation of metal release and transport in flodded pre-oxidized mine tailings Simms,P.H.;Yanful,E.K.;St-Arnaud,L.;Aube,B. https://doi.org/10.1016/S0883-2927(00)00003-2
  40. J. of Soil Sci. v.43 Properties and distribution of iron oxides and their association with minor elements in the soils of South-Western Australia Singh,B.;Gikes,R.J. https://doi.org/10.1111/j.1365-2389.1992.tb00121.x
  41. Environmental Geology v.11 Solubility relationships of aluminium and iron minerals associated with acid mine drainage Sullivan,P.J.;Yelton,J.L.;Reddy,K.L.
  42. Annal. Chem. v.51 Sequential extraction procedure for the speciation of particulate trace metals Tessier,A.;Campell,P.G.C.;Bisson,M. https://doi.org/10.1021/ac50043a017
  43. Water Environment Research v.68 Minerals and mine drainage Thomson,B.M.;Turney,W.R. https://doi.org/10.2175/106143096X135434
  44. Geochim. cosmochim. Acta. v.59 Trace metals in natural iron oxides from laterites: a study using selective kinetic extraction Tolard,F.;Bourrie,G.;jeanroy,E.;Herbillion,A.J.;Martin,H. https://doi.org/10.1016/0016-7037(95)00043-Y
  45. European Journal of Soil Science v.52 Concentrations of 60 elements in the soil solution as related to the soil acidity Tyler,G.;Olsson,T. https://doi.org/10.1046/j.1365-2389.2001.t01-1-00360.x
  46. Iron and Soils and Clay minerals, NATO ASI Series, Series C: Mathematical and physical Sciences Effects of seasonal redox processes involving iron on the chemistry of periodically reduced soils Van Breemen,N.;J.Stucki,(ed.);B.Goodman,(ed.);U.Schwertman(ed.)
  47. European Journal of Soil Science v.52 Determination of the free ion concentration of trace metals in soil solution using osil column Donnan membrane technique Weng,L.;Temminghoff,J.M.;Van Riemsdijk,W.H. https://doi.org/10.1046/j.1365-2389.2001.00416.x
  48. Soil solution chemistry: Applications to environmental Science and Agriculture Wolt,J.D.
  49. European Journal of Soil Science v.51 Methods for determining labile cadmium and zinc in soil Young,S.D.;Carstensen,T.A.;Resende,L.;Crout,N.