• Title/Summary/Keyword: {M}-tempered

Search Result 63, Processing Time 0.022 seconds

The Effects of the Tempering Temperatures on the Mechanical Properties of the Carbon Tool Steel(SK5M) for Flat Spring (박판 스프링용 탄소공구강대(SK5M)의 기계적 성질에 미치는 뜨임 온도의 영향)

  • Won S.T.;Sim K.S.;Lim C.R.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.95-96
    • /
    • 2006
  • This study examined the effects of the tempering temperatures($360-420^{\circ}C$) on the mechanical properties of the carbon tool steel (SK4M) for flat spring. Hardness test, tensile test and fatigue test were performed at room temperature($20^{\circ}C$). The tensile strength and yield strength of $390^{\circ}C\;and\;420^{\circ}C$ tempered SK5M were 0.93-0.97 times and 0.81-0.87 times those of $360^{\circ}C$ tempered SK5M, respectively. The fatigue limit of $360-420^{\circ}C$ tempered SK5M were 35-40% of tensile strength of $360-420^{\circ}C$ tempered SK5M, respectively.

  • PDF

Effects of Heat Treatments on Microstructure , Hardness and Abrasive Wear Resistance in 3%C-10%Cr-5%Mo-5%W White Cast Iron (3%C-10%Cr-5%Mo-5%W 백주철에 있어서 열처리가 현미경조직, 경도 및 내마모성에 미치는 영향)

  • Yu, Sung-Kon
    • Journal of Korea Foundry Society
    • /
    • v.19 no.1
    • /
    • pp.33-37
    • /
    • 1999
  • White cast iron of 3%C-10%Cr-5%Mo-5%W was casted, and then heat treated with three different methods such as homogenizing, austenitizing and tempering to observe its effects on the microstructure, hardness and abrasive wear resistance. In uni-directional soldification, bamboo tree-like $M_7C_3$ carbide grew along with the heat flow direction, and fishbone-like $M_6C$ carbide was dispersed randomly among $M_7C_3$ carbides. While almost pearlitic structures were observed in the as-cast specimen, those of the heat treated specimens consisted of secondary carbide, retained austenite and tempered martensite. In austenitized specimen, the amounts of retained austenite were 60.88% due to the higher cooling rate encountered in forced air cooling. On the other hand, the amounts of retained austenite were reduced from 60.88% to 23.85% in tempered specimen due to the transformation of austenite into tempered martensite. The hardness of tempered specimen showed the highest value, and then decreased in the order of austenitized, as-cast and homogenized specimens. But, the abrasive wear resistance of austenitized specimen was the highest, and then decreased in the order of tempered, as-cast and homogenized specimens.

  • PDF

Effects of Carbon, Tungsten, and Vanadium on the Microstructure, High-Temperature Wear Properties, and Surface Roughness of High Speed Steel Rolls (고속도강롤의 미세조직, 고온마모특성, 표면조도에 미치는 탄소, 텅스텐, 바나듐의 영향)

  • Ha, Dae Jin;Sung, Hyo Kyung;Park, Joon Wook;Lee, Sunghak
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.7
    • /
    • pp.406-415
    • /
    • 2009
  • A study was conducted on the effects of carbon, tungsten, and vanadium on the wear properties and surface roughness of four High Speed Steel (HSS) rolls manufactured by the centrifugal casting method. Hot-rolling simulation tests were carried out using a high-temperature wear tester capable of controlling speed, load, and temperature. HSS rolls contained a large amount (up to 25 vol.%) of carbides such as MC, $M_{2}C$, $M_{7}C_{3}$, and $M_{6}C$ carbides formed in the tempered martensite matrix. The matrix consisted mainly of lath tempered martensite when the carbon content in the matrix was small, and contained a considerable amount of plate tempered martensite when the carbon content increased. The high-temperature wear test results indicated that the wear properties and surface roughness of the rolls improved when the amount of hard MC carbides formed inside solidification cells increased. The rolls distribution was also homogeneous. The best wear properties and surface roughness were obtained from a roll where a large amount of MC carbides was homogeneously distributed in the lath tempered martensite matrix. The proper contents of carbon equivalent, tungsten equivalent, and vanadium were 2.0~2.3%, 9~10%, and 5~6%, respectively.

Effects of Hardness on Sliding Wear Behavior of Tempered Bearing Steel (베어링강의 미끄럼 마모거동에 미치는 Tempering 경도의 영향)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.29 no.6
    • /
    • pp.360-365
    • /
    • 2013
  • In this study, sliding wear tests were conducted to investigate the effects of tempered hardness on the sliding wear behavior of bearing steel. At a sliding speed of 0.3 m/s, the wear resistance of bearing steel with a tempered hardness of HRC 54 was superior to that with HRC 62. It was found that bearing steel with HRC 54 showed a strong tendency for the occurrence of oxidation wear at that speed, compared to that with HRC 62. This would be due to the troostitic structure of bearing steel with HRC 54, which is highly susceptible to corrosion. In this context, it is considered that sliding wear behavior could be affected by the corrosion resistance of the material.

Microstructural Changes on Weld Heat Input in $60kg/mm^2$ Quenched and Tempered High Strength Steel ($60kg/mm^2$급 조질고장력강의 용접입열량에 따른 미세조직변화)

  • 김은석;정인상;박경채
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.79-90
    • /
    • 1993
  • Shielded metal arc welding, one-ploe and two-pole submerged arc welding were accomplished to investigate microstructure changes on phase transformation behavior in $60kg/mm^2$ quenched and tempered high strength steel. Microstructures were examined by optical micrograph and TEM. In shielded metal arc welding (oxygen 250ppm), the inclusions were small size (0.3-0.5$\mu\textrm{m}$)and small in number. In submerged arc welding (oxygen 430-529ppm), the inclusions were larger(0.7-2$\mu\textrm{m}$) than that of shielded metal arc welding and large in number. Microstructure mainly depends on number and distribution of inclusions in fusion zone of weld metal. It was noticed that a limited number of inclusions favors the formation of acicular ferrite.

  • PDF

Study on the Embrittlement of the Mod. 9Cr-1Mo Steel Tempered at $550^{\circ}C$ (Mod. 9Cr-1Mo강에서의 $550^{\circ}C$ 부근에서 템퍼링시 발생하는 취성에 관한 연구)

  • Gu, Ji-Ho;Shin, Jong-Ho;Hur, Sung-Kang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.3
    • /
    • pp.156-162
    • /
    • 2010
  • The modified 9Cr-1Mo steel (P91 steel) is very popular as a boiler tube material of the USC (Ultra-Supercritical) power plants. The steels were tempered in the temperature range of 400 to $650^{\circ}C$ and the mechanical tests, such as impact and hardness tersts were performed at the room temperature for the tempered steels. A drop in the impact value (embrittlement) and the hardeness increase were simultanously observed in the range of temperature between $475^{\circ}C$ and $600^{\circ}C$, particularly at $550^{\circ}C$. TEM observation shows the hardening was caused by $M_2C$, resulting in the embrittlement. And the maximum volume fraction of $M_3C$ was also observed at $550^{\circ}C$, Therefore, the embrittlement seems to be caused by both the $M_2C$ and $M_3C$.

HYERS-ULAM-RASSIAS STABILITY OF QUADRATIC FUNCTIONAL EQUATION IN THE SPACE OF SCHWARTZ TEMPERED DISTRIBUTIONS

  • CHUNG JAEYOUNG
    • The Pure and Applied Mathematics
    • /
    • v.12 no.2 s.28
    • /
    • pp.133-142
    • /
    • 2005
  • Generalizing the Cauchy-Rassias inequality in [Th. M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.] we consider a stability problem of quadratic functional equation in the spaces of generalized functions such as the Schwartz tempered distributions and Sato hyperfunctions.

  • PDF

The Effects of the Structural Changes and Mechanical Properties of the Austenitized and Tempered Martensitic STS 410 Stainless Steel on Its Temper Embrittlement (STS 410 마르텐사이트계 Stainless 강의 템퍼취성과 조직 및 기계적 성질에 관한 연구)

  • S.H., Lee;T.H., Go;W.S., Lee;S.D., Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.6
    • /
    • pp.303-313
    • /
    • 2022
  • The purpose of this study was to test and analyze the effects of the mechanical properties and structural changes of the austenitized and tempered martensite STS 410 stainless steel containing 11.5~13%Cr and 0.10%C on its temper embrittlement. The STS 410 stainless steel test pieces for each 3 hours at 960℃, 1000℃ and then, tempered them for 2 hours at 300℃, 350℃, 400℃, 450℃, 500℃, 550℃, 600℃, 650℃ and 700℃ known as the intervals vulnerable to temper embrittlement to observe the changes of their structures and mechanical properties. In case autenitizing was insufficient due to lower temperature of thermal treatment for solution, unsolved carbides and ferrites remained in the structure after quenching, which meant that the parts could wear out and corrode to embrittle at the room temperature. Elongation and impact energy changes with Tempering conditions showed minimum results in range of 400~500℃. The decrease in elongation and impact energy at 400~500℃ was the hardening effect of the subgrain due to the precipitation of many M3C or M7C3, M23C6. And STS 410 stainless steel corrosion tested in 10% NaCl solution at 30℃ after tempering treatment. The degree of corrosion sensitization showed increasing tendency with increase of tempering temperature and Cr carbide precipitation were observed in grain boundary.

Study of the Microstructural Evolution of Tempered Martensite Ferritic Steel T91 upon Ultrasonic Nanocrystalline Surface Modification

  • He, Yinsheng;Yang, Cheol-Woong;Lee, Je-Hyun;Shin, Keesam
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.170-176
    • /
    • 2015
  • In this work, various electron microscopy and analysis techniques were used to investigate the microstructural evolution of a 9% Cr tempered martensite ferritic (TMF) steel T91 upon ultrasonic nanocrystalline surface modification (UNSM) treatment. The micro-dimpled surface was analyzed by scanning electron microscopy. The characteristics of plastic deformation and gradient microstructure of the UNSM treated specimens were clearly revealed by crystal orientation mapping of electron backscatter diffraction (EBSD), with flexible use of the inverse pole figure, image quality, and grain boundary misorientation images. Transmission electron microscope (TEM) observation of the specimens at different depths showed the formation of dislocations, dense dislocation walls, subgrains, and grains in the lower, middle, upper, and top layers of the treated specimens. Refinement of the $M_{23}C_6$ precipitates was also observed, the size and the number density of which were found to decrease as depth from the top surface decreased. The complex microstructure and microstructural evolution of the TMF steel samples upon the UNSM treatment were well-characterized by combined use of EBSD and TEM techniques.