• Title/Summary/Keyword: \delta$)-semiprime ring

Search Result 7, Processing Time 0.019 seconds

ON 4-PERMUTING 4-DERIVATIONS IN PRIME AND SEMIPRIME RINGS

  • Park, Kyoo-Hong
    • The Pure and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.271-278
    • /
    • 2007
  • Let R be a 2-torsion free semiprime ring. Suppose that there exists a 4-permuting 4-derivation ${\Delta}:R{\times}R{\times}R{\times}R{\rightarrow}R$ such that the trace is centralizing on R. Then the trace of ${\Delta}$ is commuting on R. In particular, if R is a 3!-torsion free prime ring and ${\Delta}$ is nonzero under the same condition, then R is commutative.

  • PDF

ON PRIME AND SEMIPRIME RINGS WITH SYMMETRIC n-DERIVATIONS

  • Park, Kyoo-Hong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.451-458
    • /
    • 2009
  • Let $n{\geq}2$ be a fixed positive integer and let R be a noncommutative n!-torsion free semiprime ring. Suppose that there exists a symmetric n-derivation $\Delta$ : $R^{n}{\rightarrow}R$ such that the trace of $\Delta$ is centralizing on R. Then the trace is commuting on R. If R is a n!-torsion free prime ring and $\Delta{\neq}0$ under the same condition. Then R is commutative.

  • PDF

ON PRIME AND SEMIPRIME RINGS WITH PERMUTING 3-DERIVATIONS

  • Jung, Yong-Soo;Park, Kyoo-Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.4
    • /
    • pp.789-794
    • /
    • 2007
  • Let R be a 3-torsion free semiprime ring and let I be a nonzero two-sided ideal of R. Suppose that there exists a permuting 3-derivation ${\Delta}:R{\times}R{\times}R{\rightarrow}R$ such that the trace is centralizing on I. Then the trace of ${\Delta}$ is commuting on I. In particular, if R is a 3!-torsion free prime ring and ${\Delta}$ is nonzero under the same condition, then R is commutative.

PRIME RADICALS IN ORE EXTENSIONS

  • Han, Jun-Cheol
    • East Asian mathematical journal
    • /
    • v.18 no.2
    • /
    • pp.271-282
    • /
    • 2002
  • Let R be a ring with an endomorphism $\sigma$ and a derivation $\delta$. An ideal I of R is ($\sigma,\;\delta$)-ideal of R if $\sigma(I){\subseteq}I$ and $\delta(I){\subseteq}I$. An ideal P of R is a ($\sigma,\;\delta$)-prime ideal of R if P(${\neq}R$) is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideals I and J of R, $IJ{\subseteq}P$ implies that $I{\subseteq}P$ or $J{\subseteq}P$. An ideal Q of R is ($\sigma,\;\delta$)-semiprime ideal of R if Q is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideal I of R, $I^2{\subseteq}Q$ implies that $I{\subseteq}Q$. The ($\sigma,\;\delta$)-prime radical (resp. prime radical) is defined by the intersection of all ($\sigma,\;\delta$)-prime ideals (resp. prime ideals) of R and is denoted by $P_{(\sigma,\delta)}(R)$(resp. P(R)). In this paper, the following results are obtained: (1) $P_{(\sigma,\delta)}(R)$ is the smallest ($\sigma,\;\delta$)-semiprime ideal of R; (2) For every extended endomorphism $\bar{\sigma}$ of $\sigma$, the $\bar{\sigma}$-prime radical of an Ore extension $P(R[x;\sigma,\delta])$ is equal to $P_{\sigma,\delta}(R)[x;\sigma,\delta]$.

  • PDF

NOTES ON SYMMETRIC SKEW n-DERIVATION IN RINGS

  • Koc, Emine;Rehman, Nadeem ur
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1113-1121
    • /
    • 2018
  • Let R be a prime ring (or semiprime ring) with center Z(R), I a nonzero ideal of R, T an automorphism of $R,S:R^n{\rightarrow}R$ be a symmetric skew n-derivation associated with the automorphism T and ${\Delta}$ is the trace of S. In this paper, we shall prove that S($x_1,{\ldots},x_n$) = 0 for all $x_1,{\ldots},x_n{\in}R$ if any one of the following holds: i) ${\Delta}(x)=0$, ii) [${\Delta}(x),T(x)]=0$ for all $x{\in}I$. Moreover, we prove that if $[{\Delta}(x),T(x)]{\in}Z(R)$ for all $x{\in}I$, then R is a commutative ring.

SKEW n-DERIVATIONS ON SEMIPRIME RINGS

  • Xu, Xiaowei;Liu, Yang;Zhang, Wei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1863-1871
    • /
    • 2013
  • For a ring R with an automorphism ${\sigma}$, an n-additive mapping ${\Delta}:R{\times}R{\times}{\cdots}{\times}R{\rightarrow}R$ is called a skew n-derivation with respect to ${\sigma}$ if it is always a ${\sigma}$-derivation of R for each argument. Namely, if n - 1 of the arguments are fixed, then ${\Delta}$ is a ${\sigma}$-derivation on the remaining argument. In this short note, from Bre$\check{s}$ar Theorems, we prove that a skew n-derivation ($n{\geq}3$) on a semiprime ring R must map into the center of R.

ON QUASI-RIGID IDEALS AND RINGS

  • Hong, Chan-Yong;Kim, Nam-Kyun;Kwak, Tai-Keun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.385-399
    • /
    • 2010
  • Let $\sigma$ be an endomorphism and I a $\sigma$-ideal of a ring R. Pearson and Stephenson called I a $\sigma$-semiprime ideal if whenever A is an ideal of R and m is an integer such that $A{\sigma}^t(A)\;{\subseteq}\;I$ for all $t\;{\geq}\;m$, then $A\;{\subseteq}\;I$, where $\sigma$ is an automorphism, and Hong et al. called I a $\sigma$-rigid ideal if $a{\sigma}(a)\;{\in}\;I$ implies a $a\;{\in}\;I$ for $a\;{\in}\;R$. Notice that R is called a $\sigma$-semiprime ring (resp., a $\sigma$-rigid ring) if the zero ideal of R is a $\sigma$-semiprime ideal (resp., a $\sigma$-rigid ideal). Every $\sigma$-rigid ideal is a $\sigma$-semiprime ideal for an automorphism $\sigma$, but the converse does not hold, in general. We, in this paper, introduce the quasi $\sigma$-rigidness of ideals and rings for an automorphism $\sigma$ which is in between the $\sigma$-rigidness and the $\sigma$-semiprimeness, and study their related properties. A number of connections between the quasi $\sigma$-rigidness of a ring R and one of the Ore extension $R[x;\;{\sigma},\;{\delta}]$ of R are also investigated. In particular, R is a (principally) quasi-Baer ring if and only if $R[x;\;{\sigma},\;{\delta}]$ is a (principally) quasi-Baer ring, when R is a quasi $\sigma$-rigid ring.