• Title/Summary/Keyword: \beta,\

Search Result 21,416, Processing Time 0.042 seconds

Synthesis and $5{\alpha}$-Reductase Inhibitory Activity of $3{\beta}$-Substituted 5-Androstene-17-Carboxamides ($3{\beta}$-치환 5-Androstene-17-Carboxamides 합성과 $5{\alpha}$-Reductase 저해 활성)

  • Jo, Ik-Sung;Ma, Eun-Sook
    • YAKHAK HOEJI
    • /
    • v.54 no.6
    • /
    • pp.466-473
    • /
    • 2010
  • A series of $3{\beta}$-substituted 5-androstene-$17{\beta}$-carboxamides were synthesized from analogs of $3{\beta}$-hydroxy-5-androstene-$17{\beta}$-carboxylic acid (1) with tert-butylamine, N,N-diethylamine and 3-aminopyridine and some compounds were epoxidized with mCPBA. A rat prostate testosterone $5{\alpha}$-reductase inhibitory activity of synthesized compounds was assessed by radioimmunoassay using [1,2,6,7-3H]-testosterone as substrate. All synthesized compounds showed lower activity than finasteride and the N-(3-pyridino)-$3{\beta}$-carboxycarbonyloxy-5-androstene-$17{\beta}$-carboxamide (12) showed weak inhibitory activity ($IC_{50}$: $2.4{\times}10^{-7}M$).

Effects of a Processing Inhibitor on the Overproduction of Plasmid Encoded ${\beta}$-lactamase in E. coli (대장균 ${\beta}$-lactamase의 대량생산시 Processing Inhibitor의 영향)

  • 홍원경;김은기
    • KSBB Journal
    • /
    • v.6 no.1
    • /
    • pp.111-114
    • /
    • 1991
  • The effects of the precursor processing inhibitor, carbonylcyanide-chlorophenyl hydrazone(CCCP), are investigated on the production of soluble ${\beta}-lactamase$ the formation of the inclusion body when ${\beta}-lactamase$ is overproduced by induction with isopropyl thiogalactoside(IPTG). When cells are treated by CCCP, more soluble ${\beta}-lactamase$ is produced. In this case, no difference in the amount of inclusion body is observed.

  • PDF

Synthesis of 6-(Carboxymethylthio) penicillanic Acid Derivatives from 6${\beta}$-Bromopenicillanates (6${\beta}$-Bromopenicillanate로부터 6-(Carboxymethylthio) penicillanic Acid 유도체의 합성)

  • Won-Sik Choi;Young-Haeng Lee;Chai-Ho Lee
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.575-579
    • /
    • 1991
  • Reaction of 6${\beta}$-bromopenicillanic acid(4a) with p-nitrobenzylbromide, 3-bromophthalide, chloromethylpivalate and 1-chlorodiethylcarbonate afforded 6${\beta}$-bromopenicillanates(4b~4e). New ${\beta}$-lactam compound, 6-(carboxymethylthio)penicillanic acid(5a) and the other esters(5b~5e) were prepared by nucleophilic substitution reaction of 6${\beta}$-bromopenicillanic acid(4a) and the other esters(4b~4e) with thioglycolic acid.

  • PDF

Feasibility Study on Development of an Underwater Beta-ray Monitoring Sensor (수중 내 베타선 모니터링 센서 개발을 위한 기초연구)

  • Park, Hye Min;Joo, Koan Sik
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.333-336
    • /
    • 2016
  • In this study, a beta monitoring sensor was developed as a part of basic research for quantitative beta monitoring underwater, and its performance was evaluated using a calibration source. A beta detection sensor was manufactured by using SiPM(silicon photomultiplier) and $CaF_2$:Eu, YAG:Ce, YAP:Ce scintillator. A large-area light guide was introduced to improve beta-ray detection efficiency. As calibration sources, the Beta source $^{90}Sr$, which is the main fission product of a nuclear accident, and the gamma source $^{137}Cs$ are used. In the performance evaluation, it is confirmed that scintillator $CaF_2:Eu$ gives the highest beta-ray detection response. Compared to gamma ray, beta-ray detection responsivity and detection efficiency are verified. Therefore, this study is expected to contribute to basic research in the development of an underwater beta-ray monitoring system.

Encapsulation of Flavors by Molecular Inclusion Using $\beta$-Cyclodextrin: Comparison with Spray-drying Process Using Carbohydrate-based Wall Materials

  • Cho, Young-Hee;Park, Ji-Yong
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.185-189
    • /
    • 2009
  • Microencapsulation of flavor was carried out by molecular inclusion process using $\beta$-cyclodextrin (${\beta}CD$). ${\beta}CD$-flavor complex was prepared at various flavor-to-${\beta}CD$ ratios (1:6-1:12) to determine the effect of ${\beta}CD$ concentration on the inclusion efficiency. Maximum total oil retention and minimal surface oil content were obtained at flavors to ${\beta}CD$ ratio of 1:10. The physical properties and controlled release pattern of flavors from ${\beta}CD$-flavor complex were measured and compared with spray-dried microcapsules prepared using carbohydrate wall system. ${\beta}CD$-flavor complex showed higher total oil retention and surface oil contents, smaller mean particle size, lower moisture uptake, and higher oxidation stability than spray-dried microcapsule. Oxidative stability of flavor was correlated with hygroscopicity of wall materials. The controlled release mechanism was highly affected by temperature and characteristics of wall materials.

Vehicle Tracking Using Fuzzy Logic (퍼지 논리를 이용한 차랑 추적)

  • 정태진;김인택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.154-157
    • /
    • 2000
  • In this paper, we propose a method for vehicle tracking systems using fuzzy logic. The standard ${\alpha}$-${\beta}$ filter estimates the future target positions using fixed ${\alpha}$,${\beta}$ coefficients. We utilize the if-then fuzzy logic to make ${\alpha}$ and ${\beta}$ coefficients vary with the position. Comparisons are made in tracking vehicles using three different schemes: the standard ${\alpha}$-${\beta}$ filter, ${\alpha}$-${\beta}$ filter using fuzzy logic, and the Kalman filter.

  • PDF

Beta-amyloid imaging in dementia

  • Chun, Kyung Ah
    • Journal of Yeungnam Medical Science
    • /
    • v.35 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Alzheimer's disease (AD) is a neurodegenerative disorder associated with extracellular plaques, composed of amyloid-beta ($A{\beta}$), in the brain. Although the precise mechanism underlying the neurotoxicity of $A{\beta}$ has not been established, $A{\beta}$ accumulation is the primary event in a cascade of events that lead to neurofibrillary degeneration and dementia. In particular, the $A{\beta}$ burden, as assessed by neuroimaging, has proved to be an excellent predictive biomarker. Positron emission tomography, using ligands such as $^{11}C$-labeled Pittsburgh Compound B or $^{18}F$-labeled tracers, such as $^{18}F$-florbetaben, $^{18}F$-florbetapir, and $^{18}F$-flutemetamol, which bind to $A{\beta}$ deposits in the brain, has been a valuable technique for visualizing and quantifying the deposition of $A{\beta}$ throughout the brain in living subjects. $A{\beta}$ imaging has very high sensitivity for detecting AD pathology. In addition, it can predict the progression from mild cognitive impairment to AD, and contribute to the development of disease-specific therapies.

Large Acceleration Effects of Mono-6-(alkylamino)-$\beta$-cyclodextrins on the Cleavage of p-Nitrophenyl $\alpha$-Methoxyphenylacetate

  • Kwanghee Koh;Byung-Kue Kang
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.9
    • /
    • pp.795-799
    • /
    • 1994
  • Kinetic studies of the deacylation reactions of p-and m-nitrophenyl esters of (R or S)-${\alpha}$ -methoxyphenylacetic acid were performed in ${\beta}$ -CD, mono-6-deoxy-6-[N-(2-aminoethyl)]amino-${\beta}$-CD (${\beta}$-CDen) and mono-6-deoxy-6-[N-(2-aminoethyl)-2-aminoethyl] amino-${\beta}$-CD (${\beta}$-CDdien) media. The binding constants (K) of the substrates to the hosts and the rate constants ($k_{\varphi}^{CD}$) for the complexed substrates were determined. $k_{\varphi}^{CD}$ values are highly dependent on the hosts and the substrates, whereas differences in K values among them are modest. The p-nitrophenyl esters show larger acceleration by -${\beta}$-CDen and -${\beta}$-CDdien than the corresponding m-isomers, while the m-isomers are more reactive than the p-isomers in -${\beta}$-CD media. This is taken as an indication that the amino groups attached to the primary side of -${\beta}$-CD participate in the deacylation reaction.

Anti-Allergic Activity of 18$\beta$-Glycyrrhetinic acid-3-O-$\beta$-D-glucuronide

  • Park, Hae-Young;Park, Sung-Hwan;Yoon, Hae-Kyung;Han, Myung-Joo;Kim, Dong-Hyun
    • Archives of Pharmacal Research
    • /
    • v.27 no.1
    • /
    • pp.57-60
    • /
    • 2004
  • Glycyrrhizin (18$\beta$-glycyrrhetinic acid-3-O-$\beta$-D-glucuronopyranosyl-(1$\rightarrow2)-\beta$-D-glucuronide, GL) was transformed to 18$\beta$-glycyrrhetinic acid-3-O-$\beta$-D-glucuronide (GAMG) by Streptococcus LJ-22. The antiallergic activities of GL and GAMG was measured using a RBL cell assay system and contact hypersensitivity model mice. GAMG exhibited anti-allergic activity with $IC_{50}$ values of 0.28 mM. GAMG, which is sweeter than GL, and 18$\beta$-glycyrrhetinic acid, which is a GAMG metabolite by human intestinal bacteria, also inhibited the passive cutaneous anaphylaxis and skin contact inflammation. In conclusion, GAMG may be useful as a new sweet food additive and an anti-allergic agent.

ESTIMATES FOR RIESZ TRANSFORMS ASSOCIATED WITH SCHRÖDINGER TYPE OPERATORS

  • Wang, Yueshan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1117-1127
    • /
    • 2019
  • Let ${\mathcal{L}}_2=(-{\Delta})^2+V^2$ be the $Schr{\ddot{o}}dinger$ type operator, where nonnegative potential V belongs to the reverse $H{\ddot{o}}lder$ class $RH_s$, s > n/2. In this paper, we consider the operator $T_{{\alpha},{\beta}}=V^{2{\alpha}}{\mathcal{L}}^{-{\beta}}_2$ and its conjugate $T^*_{{\alpha},{\beta}}$, where $0<{\alpha}{\leq}{\beta}{\leq}1$. We establish the $(L^p,\;L^q)$-boundedness of operator $T_{{\alpha},{\beta}}$ and $T^*_{{\alpha},{\beta}}$, respectively, we also show that $T_{{\alpha},{\beta}}$ is bounded from Hardy type space $H^1_{L_2}({\mathbb{R}}^n)$ into $L^{p_2}({\mathbb{R}}^n)$ and $T^*_{{\alpha},{\beta}}$ is bounded from $L^{p_1}({\mathbb{R}}^n)$ into BMO type space $BMO_{{\mathcal{L}}1}({\mathbb{R}}^n)$, where $p_1={\frac{n}{4({\beta}-{\alpha})}}$, $p_2={\frac{n}{n-4({\beta}-{\alpha})}}$.