• 제목/요약/키워드: [$^{18}F$]Fluorination

검색결과 18건 처리시간 0.022초

High Yielding [18F]Fluorination Method by Fine Control of the Base

  • Lee, Sang-Ju;Oh, Seung-Jun;Chi, Dae-Yoon;Moon, Dae-Hyuk;Ryu, Jin-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2177-2180
    • /
    • 2012
  • New [$^{18}F$]F-fluorination methods using a minimized amount of precursor has been developed by controlling the base concentration. In the first method, pre-conditioning of the anion exchange cartridge with $K_2CO_3$ solution or water was carried out. The trapped [$^{18}F$]fluoride on the cartridge was then eluted by KOMs or KOTf solution. [$^{18}F$]F-Fluorination could be performed without additional base. In the second method, the QMA cartridge was preconditioned with KOMs solutions. Trapped [$^{18}F$]fluoride on the QMA was then eluted with KOMs and additional base, such as KOH, $K_2CO_3$, and $KHCO_3$, was added into the reaction vessel. Method 1 showed a [$^{18}F$]F-incorporation yield of 20.9% for [$^{18}F$]FLT synthesis with 5 mg of precursor. Unlike method 1, a [$^{18}F$]F-incorporation yield of 91.4% was achieved from the same amount of precursor in method 2.

[18F]Aryl fluorides from hypervalent iodine compounds

  • Chun, Joong-Hyun;Son, Jeongmin;Park, Jun Young;Yun, Mijin
    • 대한방사성의약품학회지
    • /
    • 제3권1호
    • /
    • pp.3-14
    • /
    • 2017
  • Nucleophilic aromatic fluorination has been one of the most explored methods in fluorin-18 based radiochemistry. Unlike electrophilic $[^{18}F]$fluorination methods, no-carrier-added nucleophilic radiofluorination with cyclotron-produced $[^{18}F]$fluoride ion offers better specific radioactivity which is essential aspect to obtain good quality images from positron emission tomography. Contrary to amenable aliphatic radiofluorination, the development of reliable aromatic $[^{18}F]$fluorination methods has been pursued by many research groups; however, no viable method has yet been established. Recently, hypervalent iodine compound draws increasing attention as versatile radiolabeling precursor for various $[^{18}F]$fluoroarenes, since it bears the capacity to introduce fluorine-18 either on electron-deficient or electron-rich aryl ring with enhanced regiospecificity. Other classes of hypervalent iodine congeners often utilized in radiochemistry are iodylarenes, iodonium ylides, and spirocyclic iodonium ylides. Recently developed spirocyclic iodonium ylides have already been avidly employed to provide various $[^{18}F]$aryl fluorides with high labeling efficiency. This metal-free protocol would afford efficient routes, replacing the traditional approaches to $[^{18}F]$fluoroarenes, from prosthetic labeling synthons to complex PET radiotracers.

Fast and Easy Drying Method for the Preparation of Activated [18F]Fluoride Using Polymer Cartridge

  • Seo, Jai-Woong;Lee, Byoung-Se;Lee, Sang-Ju;Oh, Seung-Jun;Chi, Dae-Yoon
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권1호
    • /
    • pp.71-76
    • /
    • 2011
  • An efficient nucleophilic [$^{18}F$]fluorination has been studied to reduce byproducts and preparation time. Instead of conventional aqueous solution of $K_2CO_3-K_{222}$, several organic solution containing inert organic salts were used to release [$^{18}F$]fluoride ion and anion bases captured in the polymer cartridge, concluding that methanol solution is the best choice. Comparing to azeotropic drying process, one min was sufficient to remove methanol completely, resulting in about 10% radioactivity saving by reducing drying time. The polymer cartridge, Chromafix$^{(R)}$ (PS-$HCO_3$) was pretreated with several anion bases to displace pre-loaded bicarbonate base. Phosphate bases showed better results than carbonate bases in terms of lower basicity. tert-Butanol solvent used as a reaction media played another critical role in nucleophilic [18F]fluorination by suppressing eliminated side product. Consequent [$^{18}F$]fluorination under the present condition afforded fast preparation of reaction solution and high radiochemical yields (98% radio-TLC, 84% RCY) with 94% of precursor remained.

Recent advances of aromatic C-F bond borylation and its application to positron emission tomography

  • Song, Dalnim;Lee, Sanghee;Lee, Byung Chul;Kim, Sang Eun;Lee, Eunsung
    • 대한방사성의약품학회지
    • /
    • 제1권2호
    • /
    • pp.80-87
    • /
    • 2015
  • Carbon-fluorine (C-F) bonds have been found ubiquitously in pharmaceuticals, radiopharmaceuticals, agrochemicals, and material science due to their unique properties such as thermal and oxidative stability and lipophilicity to improve bioavailability. For the past five years, there have been significant advances in F-18 fluorination of aromatic complex molecules combined with the development of late-stage fluorination reactions. More recently, direct incorporation of F-18 to fluorinated aromatic molecules via borylation of C-F bonds has been developed by Niwa and Hosoya. In this minireview, we will discuss the progress of C-F bondborylation of fluorinated arenes utilizing transition metal catalysts and the impact on the development of F-18 radiotracers for positron emission tomography (PET).

$^{18}F$-플루오린 표지를 위한 신개념 반응용매에서 친핵성 불소화 반응 (Nucleophilic Fluorination Reactions in Novel Reaction Media for $^{18}F$-Fluorine Labeling Method)

  • 김동욱;정환정;임석태;손명희
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제43권2호
    • /
    • pp.91-99
    • /
    • 2009
  • Noninvasive imaging of molecular and biological processes in living subjects with positron emission tomography(PET) provides exciting opportunities to monitor metabolism and detect diseases in humans. Measuring these processes with PET requires the preparation of specific molecular imaging probes labeled with $^{18}F$-fluorine. In this review we describe recent methods and novel trends for the introduction of $^{18}F$-fluorine into molecules which in turn are intended to serve as imaging agents for PET study. Nucleophilic $^{18}F$-fluorination of some halo- and mesyloxyalkanes to the corresponding $^{18}F$-fluoroalkanes with $^{18}F$-fluoride obtained from an $^{18}O(p,n)^{18}F$ reaction, using novel reaction media system such as an ionic liquidor tert-alcohol, has been studied as a new method for $^{18}F$-fluorine labeling. Ionic liquid method is rapid and particularly convenient because $^{18}F$-fluoride in $H_2O$ can be added directly to the reaction media, obviating the careful drying that is typically required for currently used radiofluorination methods. The nonpolar protic tert-alcohol enhances the nucleophilicity of the fluoride ion dramatically in the absence of any kind of catalyst, greatly increasing the rate of the nucleophilic fluorination and reducing formation of byproducts compared with conventional methods using dipolar aprotic solvents. The great efficacy of this method is a particular advantage in labeling radiopharmaceuticals with $^{18}F$-fluorine for PETimaging, and it is illustrated by the synthesis of $^{18}F$-fluoride radiolabeled molecular imaging probes, such as $^{18}F$-FDG, $^{18}F$-FLT, $^{18}F$-FP-CIT, and $^{18}F$-FMISO, in high yield and purity and in shorter times compared to conventional syntheses.

Novel organic catalysts for nucleophilic fluorination including F-18 radiofluorination

  • Na, Hyeon Su;Kim, Dong Wook
    • 대한방사성의약품학회지
    • /
    • 제3권2호
    • /
    • pp.116-121
    • /
    • 2017
  • To overcome the low reactivity and solubility of alkali metal fluorides (MFs), various types of phase transfer catalysts (PTCs) have been developed over the last decades. However, since the fluoride activated by such PTC sometimes has a strong basicity, it may cause various side reactions such as elimination reaction or hydroxylation reaction in the nucleophilic fluorination reaction. Also, they may cause separation problems in the compound purification process. In recent advanced study, various PTCs have been developed to solve these problem of conventional catalyst. In this review, we would like to introduce three kinds of novel multifunctional organic catalysts such as bis-tert-alcohol-functionalized crown-6-calix[4]arene (BACCA), easy separable pyrene-tagged ionic liquid (PIL) by reduced graphene oxide (rGO), and tri-tert-butanolamine organic catalyst.

Transition metal-mediated/catalyzed fluorination methodology developed in the 2000s

  • Bae, Dae Young;Lee, Eunsung
    • 대한방사성의약품학회지
    • /
    • 제3권2호
    • /
    • pp.122-128
    • /
    • 2017
  • In the 2000s, there has been a significant advance on carbon-fluorine (C-F) bond formation reactions via transition metal mediated or catalyzed methods. Of course, for the past 10 years, transition metal catalysis improves C-F bond formation in terms of practicality and even can be applied to C-18F bond formation reaction. In this mini-review, we summarize various transition metal mediated or catalyzed fluorination reactions, which were developed in the mid-2000s.

이오도늄 솔트 전구체를 이용한 새로운 방향족 화합물 플루오린-18 표지 기술 (A Novel Aromatic Fluorine-18 Labeling Method Using Iodonium Salts Precursor)

  • 문병석;이병철;김상은
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제43권1호
    • /
    • pp.1-9
    • /
    • 2009
  • As many new drug substances contained various aromatic rings and fluorine attached to an electron rich aromatic ring or on the meta-position, a strategy towards improvement in aromatic fluorination of these compounds is highly desirable. The introduction of fluorine-18 onto aromatic rings showed in the limited condition containing electron withdrawing group (EWG) on the para- or ortho-position to get reasonable radiochemical yield so far. No-carrier added (NCA) [$^{18}F$]fluoroarene syntheses by iodonium salts recently reported that has the potential to greatly increase the yield in systems or positions that normally not reactive enough to give sufficient yields in simple model reaction. This review describes the methodological approach towards effective aromatic fluorination by diaryliodonium salts and future prospects in an application of novel PET radiotracer.

About naked fluoride

  • Lee, Eunsung
    • 대한방사성의약품학회지
    • /
    • 제4권2호
    • /
    • pp.121-123
    • /
    • 2018
  • Fluoride is one of most important atoms for both clinical and pharmaceutical usage. Associated with such a strong need, $^{18}F$-fluoride has been widely used as an essential radioisotope. The fluoride always suffers from strong solvation effects through strong hydrogen bonding, which reduce the reactivity of fluoride anion. To enhance the reactivity, the concept of naked fluoride was introduced in the fluorination field. In this essay, I will briefly describe the history of naked fluoride concept and development of naked fluoride sources.