유한요소법의 도입과 Computer 산업의 발전으로 그동안 정확한 이론적 해석에만 의존하던 많은 구조해석 문제들이 유한요소법을 이용하여 근사해를 구할 수 있게 되었다. 그러나 유한요소법 S/W에 대한 정확한 이해와 구조에 대한 개념을 정확히 이해하지 못한채 범용 유한요소법 S/W를 이용함으로써 구조분야에 오랜 경험을 가진 사람들 마저도 자신도 모르는 사이에 종종 오류를 범하는 사례를 볼 수 있기 때문에 유한요소법 S/W 이용에 유의해야 한다. 유한요소법의 발전은 그동안 구조해석상 많은 어려움을 겪고 있던 기초공학 분야에도 많은 도움을 주어 요즘 이 분야에서의 유한요소법 이용이 날로 가속화되고 있다. 이런 시점에서 기초공학 분야에 필요한 유한요소법의 기본적인 개념을 소개하고자 한다.
본 논문에서는 일반유한요소법(Generalized Finite Element Method)를 이용하여 응력확대계수를 계산하는 방법을 소개한다. 기존의 유한요소법을 사용하여 응력확대계수를 계산하기위해서는 J-integral 방법 등을 이용한 후처리 과정이 필수적으로 요구된다. 뿐만 아니라 균열선단 근방에서의 응력을 기술하기 위해서는 세밀한 요소망(mesh)이 요구된다. 후처리 과정과 균열선단 근방에서의 요소망은 수치적 오류를 발생시키고 이는 정확한 응력확대계수를 얻는데 어려움을 준다. 일반유한요소법은 근사함수를 요소망의 영향 없이 추가해서 사용할 수 있는 장점을 가지고 있지만, 활용성 측면에서 기존의 유한요소법보다 복잡하여 실용성이 떨어진다. 본 논문에서는 일반유한요소법의 장점을 충분히 살려 균열선단근방에서는 응력을 모델링하여 근사함수로 사용하고 균열선단에서 거리가 먼 곳은 기존의 유한요소를 써서 계산을 하였다. 특별한 후처리 과정(Post processing) 없이 비교적 정확한 응력확대계수를 손쉽게 얻을 수 있다. 일반유한요소법을 이용한 제시된 방법론이 타당함을 수치 예제를 통하여 확인하였다.
현재까지 구조해석에는 유한요소법이 가장 널리 사용되고 있으므로, 이 글에서도 유한요소법이 사용됨을 전제로 모든 과정을 논의한다. 유한요소라이브러리에서 뼈대구조물에 가장 적합한 것은 보요소(beam element)라 할 수 있다. 따라서 여기에서는 보요소를 주로 이용하는 유한요소법에 근거를 두고 뼈대구조물의 최적화 설계과정을 기술하기로 한다.
유한요소법은 구조물의 변위 또는 응력 등을 해석하기 위한 구조해석 분야에서 뿐만 아니라, 유체역학, 열역학 및 전자기학 등 각종 공학문제의 수학적 모형에 대하여 구해진 미분방정식을 푸는 기법으로 널리 사용되고 있다. 특히, 컴퓨터 기술의 급속한 발달로 인한 유한요소법의 적용범위는 더욱 확장되고 있다. 본 고는 유한요소법이 타 공학문제, 특히 유체에 관련된 문제에서 어떻게 이용되고 있는가를 소개하려 한다. 구체적으로, 해양구조물의 설계에 있어서 선결되어야 할 주요사항인 파랑하중 산정문제를 예로 들어, 유한요소법을 이용한 이의 수식화과정을 간략히 설명하였다.
유한요소법의 전산유체 역학분야에 대한 응용현황을 계산방법과 적용례를 중심으로 정리하였다. 유한요소법의 가장 큰 장점은 복잡한 유동영역을 해석하기 위한 불규칙 요소망(unstructured mesh)의 사용이라 볼 수 있으며 적응적 요소망을 이용하여 계산의 정확도를 높일 수 있는 것 또한 강점이라 할 수 있다. 다만 불규칙 요소망 사용으로 인해 수반되는 대수 방정식 계산시간 및 기억용량의 증가는 conjugate gradient 방법 등을 이용하여 반드시 해결되어야만 한다. 지금 까지 유한요소법을 이용한 계산방법을 개발해 오는 과정을 보면 유한차분법에서 오래 전에 개 발된 방법들을 도입한 경우가 많았으며 특히 난류 및 개발된 경우가 많으며 대부분의 경우 이 들을 그대로 도입, 이용하였다. 반대로 최근에 항공기 동체설계 분야를 중심으로 복잡한 형태의 유동영역을 해석이 요구되는 경우 유한차분법, 특히 유한체적법(finite volume method)에 삼각형 유한요소를 이용한 불규칙 요소망을 도입하여 성공적으로 이용하고 있다. 따라서 전산유체 역 학의 발전을 위하여 두 분야의 유기적인 협조가 필요하며 결과적으로 전산유체 역학기법이 완 전히 기계설계의 한 분야로 정립될 수 있도록 많은 노력이 필요하다고 본다.
하천의 2차원 흐름 및 하상변동, 오염확산 해석을 위한 유체의 수치해석법에는 유한요소법, 유한차분법, 유한차분법의 변형인 유한체적법, 경계적분법 등이 있으며, 국내의 경우 비구조적 요소망(unstructured mesh)을 이용하여 복잡한 형상을 표현하기가 상대적으로 용이한 유한요소법이 널리 사용되고 있다. 하천을 유한 요소화 하는 전처리 과정은 전체 해석 과정을 자동화 하는데 있어 필수적인 요소이며, 주로 삼각 요소망 또는 사각 요소망을 이용하여 해석을 수행하게 된다. 삼각 요소망의 경우 상대적으로 자동화하기 쉬운 반면 사각 요소망의 생성은 절점 생성 자체가 삼각 요소망 보다 더 많은 기하학적 제한 요소를 가지고 있기 때문에 상대적으로 완성도 높은 알고리즘을 구현하기가 어렵다 할 수 있다. 이에 따라 본 연구에서는 2차원 상에서 사각 요소망(quadrilateral elements)을 생성할 수 있는 Paving method를 중심으로 한 요소망 생성 알고리즘에 대해 고찰하고, 국내 최초의 범용 수치해석 모형인 RAMS(River Analysis and Modeling System)에 적용하였다. Paving method는 1990년에 Blacker and Stephenson에 의해 제안되었으며, Sandia National Laboratories에 의해 완성되었다. Paving Method는 advancing front style의 요소망을 생성하게 되고, 바깥쪽에서 안쪽으로 element layer를 생성하면서 채워나간다. 본 연구에서는 기존의 요소망 생성 프로세스에서 element 삽입 전의 검증 기능을 강화한 새로운 버전의 paving method를 적용하엿다.
현장지반의 최대전단탄성계수를 신속하고 합리적으로 구할 수 있는 표면파기법에 대해 유한요소법을 이용하여 시뮬레이션 할 경우 적용할 수 있는 효율적인 해석조건에 대한 연구를 수행하였다. 본 연구결과 파의 전파형상을 효율적으로 묘사하기 위하여는 관심 있는 최소 파장에 대한 유한요소 크기의 비가 매우 중요한 요소임을 확인하였고, 데이터의 측정시간간격도 중요한 요소임을 확인하였다. 또한, 유한요소해석을 이용하여 얻은 반무한체 시스템과 2층 시스템의 분산곡선과 이론적 분산곡선이 비교적 잘 일치함을 볼 수 있었다. 따라서, 유한요소해석을 적절히 적용하는 경우에 표면파기법을 효과적으로 시뮬레이션 할 수 없음을 확인하였다. 현장지반의 최대전단탄성계수를 신속하고 합리적으로 구할 수 있는 표면파기법에 대해 유한요소법을 이용하여 시뮬레이션 할 경우 적용할 수 있는 효율적인 해석조건에 대한 연구를 수행하였다. 본 연구결과 파의 전파형상을 효율적으로 묘사하기 위하여는 관심 있는 최소 파장에 대한 유한요소 크기의 비가 매우 중요한 요소임을 확인하였고, 데이터의 측정시간간격도 중요한 요소임을 확인하였다. 또한, 유한요소해석을 이용하여 얻은 반무한체 시스템과 2층 시스템의 분산곡선과 이론적 분산곡선이 비교적 잘 일치함을 볼 수 있었다. 따라서, 유한요소해석을 적절히 적용하는 경우에 표면파기법을 효과적으로 시뮬레이션 할 수 없음을 확인하였다.
본고에서는 유한요소법(FEM:Finite Element Method)을 활용하여 이방법의 장점인 복수법, 시변전계 및 직류이온장의 해석기법을 소개하고 그약점인 개방된 영역의 전계해석을 위한 경계이완법의 설명과 계산예, 그리고 유한요소법에 의한 전계계산법의 문제점과 향후전망을 언급코자 한다.
현재 금속 성형공정에 대한 해석법으로 강소성 유한요소법이 널리 이용되고 있다. 강소성 유한요소법에서는 주어진 시간에서 속도장을 얻고 가공물 형상을 시간증분 만큼 갱신하는 과정을 반복하여 비정상상태 금속성형공정의 해석한다. 일반적인 강소성 유한요소법은 형상갱신(Geometry update) 과정에서 오일러법(Euler method)을 이용한다. 오일러법에서는 시간증분의 크기가 해의 정밀도에 중요한 인자이다. 충분히 정밀한 해를 얻기 위해, 작은 시간증분을 이용하여 비정상상태 금속성형공정을 해석함으로써 해석시간이 많이 걸리는 단점이 있으며 형상갱신에 따른 가공물 체적손실(Volume loss)이 발생한다.(중략)
공학문제에 있어서, 해석적으로 접근할 수 없었던 많은 경우의 문제들이 유한요소법(Finite Element Methods)의 정형화된 모형화 및 해석과정을 통하여 쉽게 접근되어질 수 있었다. 최근 보다 효율적인 요소개발과 컴퓨터 기술의 발달로 유한요소법은 더욱 효과적인 해석 수단이 되어가고 있다. 그러나 지반공학 문제와 같은 무한영역 문제를 유한요소법으로 해석할 경우, 매우 큰 영역을 모형화하기 위하여 많은 수의 요소가 요구되며 이에 따른 자유도(Degree of Freedom) 수의 증가로 많은 계산시간을 요구하게 된다. 본 고는 무한영역 문제를 효과적으로 모형화하기 위하여 연구, 개발되어진 무한요소(Infinite Element)에 대하여 소개하려 한다. 무한요소의 기본개념과 강성행렬의 형성방법을 보인 후, 기초공학 문제를 예로 하여 이의 적용방법을 간략하게 설명하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.