• Title/Summary/Keyword: , Simulation Analysis

Search Result 20,634, Processing Time 0.048 seconds

A New Mode Changable Asymmetric Full Bridge DC/DC Converter having 0 ~ 100 % Duty Ratio (0 ~ 100 % 시비율을 갖는 새로운 모드 가변형 비대칭 풀 브리지 DC/DC 컨버터)

  • Shin, Yong-Saeng;Roh, Chung-Wook;Hong, Sung-Soo;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.103-110
    • /
    • 2010
  • In this paper, a new mode changeable asymmetric full bridge dc/dc converter is proposed to solve the freewheeling current problem of the conventional zero voltage switching(ZVS) phase shift full bridge(PSFB) dc/dc converter of low output voltage and high output current applications. The proposed converter is operated as an asymmetric full bridge converter when the duty cycle is less than 50% and active clamp full bridge converter when the duty cycle is greater than 50%. As a result, since its freewheeling current is eliminated, the conduction loss is lower than that of the conventional ZVS PSFB dc/dc converter. Moreover, ZVS of all power switches can be ensured along a wide load ranges and output current ripple is very small. Therefore, high efficiency of the proposed converter can be achieved. Especially since its operation mode is changed to the active clamp full bridge converter during hold up time and can be operated with 50~100% duty ratio, it can produce the stable output voltage along wide input voltage range. The operational principles, theoretical analysis and design considerations are presented. To confirm the operation, validity and features of the proposed converter, experimental results from a 1.2kW($400V_{dc}/12V_{dc}$) prototype are presented.

A Study on MAC Protocol Design for Mobile Healthcare (모바일 헬스케어를 위한 MAC 프로토콜 설계에 관한 연구)

  • Jeong, Pil-Seong;Kim, Hyeon-Gyu;Cho, Yang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.323-335
    • /
    • 2015
  • Mobile healthcare is a fusion of information technology and biotechnology and is a new type of health management service to keep people's health at anytime and anywhere without regard to time and space. The WBAN(Wireless Body Area Network) technology that collects bio signals and the data analysis and monitoring technology using mobile devices are essential for serving mobile healthcare. WBAN consisting of users with mobile devices meet another WBAN during movement, WBANs transmit data to the other media. Because of WBAN conflict, several nodes transmit data in same time slot so a collision will occur, resulting in the data transmission being failed and need more energy for re-transmission. In this thesis, we proposed a MAC protocol for WBAN with mobility to solve these problems. First, we proposed a superframe structure for WBAN. The proposed superframe consists of a TDMA(Time Division Muliple Access) based contention access phase with which a node can transmit data in its own time slot and a contention phase using CSMA/CA algorithm. Second, we proposed a network merging algorithm for conflicting WBAN based on the proposed MAC protocol. When a WBAN with mobility conflicts with other WBAN, data frame collision is reduced through network reestablishment. Simulations are performed using a Castalia based on the OMNeT++ network simulation framework to estimate the performance of the proposed superframe and algorithms. We estimated the performance of WBAN based on the proposed MAC protocol by comparing the performance of the WBAN based on IEEE 802.15.6. Performance evaluation results show that the packet transmission success rate and energy efficiency are improved by reducing the probability of collision using the proposed MAC protocol.

Performance Analysis of the Channel Equalizers for Partial Response Channels (부분 응답 채널을 위한 채널 등화기들의 성능 분석에 관한 연구)

  • Lee, Sang-Kyung;Lee, Jae-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.8A
    • /
    • pp.739-752
    • /
    • 2002
  • Recently, to utilize the limited bandwidth effectively, the concept of partial response (PR) signaling has widely been adopted in both the high-speed data transmission and high-density digital recording/playback systems such as digital microwave, digital subscriber loops, hard disk drives, digital VCR's and digital versatile recordable disks and so on. This paper is concerned with adaptive equalization of partial response channels particularly for the magnetic recording channels. Specifically we study how the PR channel equalizers work for different choices of desired or reference signals used for adjusting the equalizer weights. In doing so, we consider three different configurations that are actually implemented in the commercial products mentioned above. First of all, we show how to compute the theoretical values of the optimum Wiener solutions derived by minimizing the mean-squared error (MSE) at the equalizer output. Noting that this equalizer MSE measure cannot be used to fairly compare the three configurations, we propose to use the data MSE that is computer just before the final detector for the underlying PR system. We also express the data MSE in terms of the channel impulse response values, source data power and additive noise power, thereby making it possible to compare the performance of the configurations under study. The results of extensive computer simulation indicate that our theoretical derivation is correct with high precision. Comparing the three configurations, it also turns out that one of the three configurations needs to be further improved in performance although it has an apparent advantage over the others in terms of memory size when implemented using RAM's for the decision feedback part.

Effects of Aerosol Optical Properties on Upward Shortwave Flux in the Presence of Aerosol and Cloud layers (구름과 에어로솔의 혼재시 에어로솔의 광학특성이 상향 단파 복사에 미치는 영향)

  • Lee, Kwon-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.301-311
    • /
    • 2017
  • Aerosol optical properties as well as vertical location of layer can alter the radiative balance of the Earth by reflecting and absorbing solar radiation. In this study, radiative transfer model (RTM) and satellite-based analysis have been used to quantify the top-of-atmosphere (TOA) radiative effect of aerosol layers in the cloudy atmosphere of the northeast Asia. RTM simulation results show that the atmospheric warming effect of aerosols increases with their height in the presence of underlying cloud layer. This relationship is higher for stronger absorbing aerosols and higher surface albedo condition. Over study region ($20-50^{\circ}N$, $110-140^{\circ}E$) and aerosol event cases, it is possible to qualitatively identify absorbing aerosol effects in the presence of clouds by combining the UV Absorbing Aerosol Index (AAI) derived from Total Ozone Mapping Spectrometer (TOMS), cloud parameters derived from the Moderate Resolution Imaging Spectro-radiometer (MODIS), with TOA Upward Shortwave Flux (USF) from the Clouds and the Earth's Radiant Energy System (CERES). As the regional-mean radiative effect of aerosols, 6 - 26 % lower the USF between aerosols and cloud cover is taken into account. These results demonstrate the importance of estimation for the accurate quantification of aerosol's direct and indirect effect.

Analysis of Mechanical Properties and Stress Crack Behavior of HOPE Geomembranes by Laboratory Installation Damage Test (실내 시공시 손상시험에 의한 HDPE 지오멤브레인의 기계적 특성 및 응력균열거동 해석)

  • Khan, Belas Ahmed;Park, Ju-Hee;Kim, Sung-Hee;Chang, Yong-Chai;Oh, Tae-Hwan;Lyoo, Won-Seok;Jeon, Han-Yong
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.203-209
    • /
    • 2011
  • Two smooth and textured surfaced HDPE geomembranes (GMs) were cut into dumbbell shape and notched where depth of the notch produced a ligament thickness of 10% to 90% of the nominal thickness with the specimen at 10% interval. A series of laboratory simulation test for installation damage were carried out at different loading cycles on HDPE GMs in accordance with ISO 10722 test method and the effect of number of loading cycle on installation damage was compared. It was found that yield stress and elongation at yield point decreased gradually as the notch depth was increased. Both installation damaged and notched, GMs were used to understand stress crack behavior and this behavior was observed through NCTL test at $50{\pm}1^{\circ}C$ at different yield stresses immerging in pH 4 and pH 12 buffer solutions. Over 35% tensile load, GMs became vulnerable to stress cracking. Both damaged and notched GMs showed the same trend. Especially, notched GMs showed less strength than installation damaged GMs at every stress cracking test condition.

Numerical simulation of turbidity currents intruding into a reservoir (저수지로 유입되는 부유사 밀도류의 수치모의)

  • Choi, Seongwook;Ban, Chaewoong;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.3
    • /
    • pp.201-210
    • /
    • 2017
  • This study proposes a numerical model which is able to simulate turbidity currents intruding into a reservoir and resulting sediment depositions. The proposed model is applied to laboratory experiments by Toniolo and Schultz (2005), and propagation of turbidity currents, morphological change, and trap of suspended sediment are simulated. It is simulated that the turbidity current after plunging at the foreset of the model delta, propagates along the bottom. The thickness of the turbidity current increases significantly after being blocked by the dam, and this effect is propagated in the upstream direction. In addition, it is simulated that the foreset moves in the downstream direction due to both the bedload and suspended load and the thickness of the bottom set increases due to the suspended load. It is found that the height of the intake affects the thickness of the turbidity current and the location of the internal hydraulic jump. The impact of the height of the intake on the trap efficiency is not clear in the experimental results, however, overall trap efficiency is predicted quite successfully by the model. Also, sensitivity analysis is carried out, and the results indicates that the particle size affects the trap efficiency most.

Impact Analysis for Transit Oriented Street Design (A Case Study for Kangnam Street in Seoul) (대중교통우선가로제 시행방안 및 기대효과 분석 (강남대로 중앙버스전용차로 도입을 중심으로))

  • 황기연;이조영
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.3
    • /
    • pp.47-56
    • /
    • 2003
  • Considering the high density developments along the major traffic corridors in Seoul, transit-oriented street designs will be a very effective to control traffic congestion along the corridors. For testing the effectiveness, we selected. for our case study, Kangnam Street, which is one of the most highly developed corridors in Seoul The traffic study on Kangnam street in 2000 shows that the daily average bus speed is 11.73km/h, which is 5km/h lower than the auto speed. The Central Bus Lane system was applied on the Kangnam street to test impact on bus speed as well as auto speed. Simulation results show that with Central Bus Lane have been improved the travel speeds of bus as well as auto on Kangnam street from 14.4km/hr to 35.0km/hr and from 25.1km/hr to 26.1km/hr, respectively. The bus market share increases about 6-8 percentages. Especially, 13.4% of bus users are increased for long-distance trips.

Analysis of Acceleration and Deceleration on High Performance Train for A Metropolitan Rapid Transit System (대피선 최소화를 고려한 광역·도시철도 급행화를 위한 고성능 열차 가감속도 분석)

  • KO, Kyeong Jun;KIM, Jung Tai;KIM, Moo Sun;JANG, Dong Uk;HONG, Jae Sung;RYU, Sang Hwan;JUNG, Jong Deok
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.6
    • /
    • pp.564-574
    • /
    • 2015
  • As shown by the popularity of the rapid train in the Seoul Metro Line No. 9, the demand for the rapidization of the metro transit has been continuously increased. However, it needs tremendous cost to construct new additional infrastructures to the existing line for the rapidization. In order to overcome the problem, utilizing the existing infrastructures such as crossing tracks as railroad sidetracks can be considered to be a good method of reducing the cost. In this case, there is a way exploiting the existing train as an express train and the advanced train, which increases both acceleration and deceleration, as a local train, but achievable acceleration and deceleration have not been analyzed rigorously. In this paper, we analyze feasible ranges and optimal values of both acceleration and deceleration of the advanced train analytically when we consider the rapidization of the metro transit utilizing the existing infrastructures and verify the results in Seoul Metro Line No. 3. Simulation results show ranges and optimal values of achievable acceleration and deceleration exist when minimum gap between an express train and a local train is smaller than 40 seconds.

Traffic Signal Control Algorithm for Isolated Intersections Based on Travel Time (독립교차로의 통행시간 기반 신호제어 알고리즘)

  • Jeong, Youngje;Park, Sang Sup;Kim, Youngchan
    • Journal of Korean Society of Transportation
    • /
    • v.30 no.6
    • /
    • pp.71-80
    • /
    • 2012
  • This research suggested a real-time traffic signal control algorithm using individual vehicle travel times on an isolated signal intersection. To collect IDs and passing times from individual vehicles, space-based surveillance systems such as DSRC were adopted. This research developed models to estimate arrival flow rates, delays, and the change rate in delay, by using individual vehicle's travel time data. This real-time signal control algorithm could determine optimal traffic signal timings that minimize intersection delay, based on a linear programming. A micro simulation analysis using CORSIM and RUN TIME EXTENSION verified saturated intersection conditions, and determined the optimal traffic signal timings that minimize intersection delay. In addition, the performance of algorithm varying according to market penetration was examined. In spite of limited results from a specific scenario, this algorithm turned out to be effective as long as the probe rate exceeds 40 percent. Recently, space-based traffic surveillance systems are being installed by various projects, such as Hi-pass, Advanced Transportation Management System (ATMS) and Urban Transportation Information System (UTIS) in Korea. This research has an important significance in that the propose algorithm is a new methodology that accepts the space-based traffic surveillance system in real-time signal operations.

River Water Temperature Variations at Upstream of Daecheong Lake During Rainfall Events and Development of Prediction Models (대청호 상류 하천에서 강우시 하천 수온 변동 특성 및 예측 모형 개발)

  • Chung, Se-Woong;Oh, Jung-Kuk
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.1 s.162
    • /
    • pp.79-88
    • /
    • 2006
  • An accurate prediction of inflow water temperature is essentially required for real-time simulation and analysis of rainfall-induced turbidity 烈os in a reservoir. In this study, water temperature data were collected at every hour during the flood season of 2004 at the upstream of Daecheong Reservoir to justify its characteristics during rainfall event and model development. A significant drop of river water temperature by 5 to $10^{\circ}C$ was observed during rainfall events, and resulted in the development of density flow regimes in the reservoir by elevating the inflow density by 1.2 to 2.6 kg/$m^3$ Two types of statistical river water temperature models, a logistic model(DLG) and regression models(DMR-1, DMR-2, DMR-3) were developed using the field data. All models are shown to reasonably replicate the effect of rainfall events on the water temperature drop, but the regression models that include average daily air temperature, dew point temperature, and river flow as independent variables showed better predictive performance than DLG model that uses a logistic function to determine the air to water relation.