• Title/Summary/Keyword: , 1608)

Search Result 172, Processing Time 0.025 seconds

Gene Cluster Analysis and Functional Characterization of Cyclomaltodextrinase from Listeria innocua (Listeria innocua 유래 cyclomaltodextrinase의 유전자 클러스터 구조 및 효소 특성)

  • Jang, Myoung-Uoon;Jeong, Chang-Ku;Kang, Hye-Jeong;Kim, Min-Jeong;Lee, Min-Jae;Son, Byung Sam;Kim, Tae-Jip
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.363-369
    • /
    • 2016
  • A putative cyclomaltodextrinase gene (licd) was found from the genome of Listeria innocua ATCC 33090. The licd gene is located in the gene cluster involved in maltose/maltodextrin utilization, which consists of various genes encoding maltose phosphorylase and sugar ABC transporters. The structural gene encodes 591 amino acids with a predicted molecular mass of 68.6 kDa, which shares less than 58% of amino acid sequence identity with other known CDase family enzymes. The licd gene was cloned, and the dimeric enzyme with C-terminal six-histidines was successfully produced and purified from recombinant Escherichia coli. The enzyme showed the highest activity at pH 7.0 and 37℃. licd could hydrolyze β-cyclodextrin, starch, and maltotriose to mainly maltose, and it cleaved pullulan to panose. It could also catalyze the hydrolysis of acarbose to glucose and acarviosine-glucose. In particular, it showed significantly higher activity towards β-cyclodextrin and maltotriose than towards starch and acarbose. licd also showed transglycosylation activity, producing α-(1,6)- and/or α-(1,3)-linked transfer products from the acarbose donor and α-methyl glucopyranoside acceptor.

Comparative Characterization of Xylanases from Two Bacillus Strains (두 종류 Bacillus속 균주의 Xylanases 특성 비교)

  • Jin, Hyun Kyung;Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.370-375
    • /
    • 2016
  • Two xylanase genes were cloned into Escherichia coli from Bacillus sp. YB-1401 and B. amyloliquefaciens YB-1402, which had been isolated as mannanase producer from home-made doenjang, respectively, and their nucleotide sequences were determined. Both xylanase genes consisted of 642 nucleotides, encoding polypeptides of 213 amino acid residues. The deduced amino acid sequences of the YB-1401 and YB-1402 xylanase, designated Xyn1401 and Xyn1402, differed from each other by single amino acid residue, Asn for Xyn1401 and Lys for Xyn1402, corresponding to amino acid position of 127. Their amino acid sequences were highly homologous to those of xylanases belonging to the glycosyl hydrolase family 11. The 28 amino acid stretch in the N-terminus of both enzymes was predicted as signal peptide by SignalP4.1 server. Both xylanases were localized at the level of 91−94% in culture filtrate of the recombinant E. coli cells, suggesting they were secreted efficiently in E. coli cells. The optimal reaction conditions were 50℃ and pH 6.0 for Xyn1401, and 55℃ and pH 6.5 for Xyn1402, respectively, indicating one amino acid difference from each other affected pH and temperature profiles of their activities. In addition, their thermostabilities were somewhat different from each other.

Augmented Osteoclastogenesis from Committed Osteoclast Precursors by Periodontopathic Bacteria Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis (치주염 유발 세균 Aggregatibacter actinomycetemcomitans와 Porphyromonas gingivalis에 의한 committed osteoclast precursor 분화 증가)

  • Park, Ok-Jin;Kwon, Yeongkag;Yun, Cheol-Heui;Han, Seung Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.557-562
    • /
    • 2016
  • Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis are gram-negative bacteria frequently found in lesions from patients with periodontitis manifesting alveolar bone loss. Lipopolysaccharides are a major virulence factor of gram-negative bacteria. Bone resorption is known to be regulated by bacteria and their virulence factors. In the present study, we investigated the effects of A. actinomycetemcomitans and P. gingivalis on bone resorption. Heat-killed A. actinomycetemcomitans (HKAa) and heatkilled P. gingivalis (HKPg) induced bone loss in the femurs of mice after intraperitoneal administration. HKAa and HKPg augmented the differentiation of committed osteoclast precursors into osteoclasts, while they inhibited the differentiation of bone marrow-derived macrophages into osteoclasts. Concordant with the effects of the heat-killed whole cells, LPS purified from A. actinomycetemcomitans and P. gingivalis also augmented osteoclast differentiation from committed osteoclast precursors but attenuated it from bone marrow-derived macrophages. Taken together, these results suggest that the whole cells and lipopolysaccharides of A. actinomycetemcomitans and P. gingivalis induce the differentiation of committed osteoclast precursors into osteoclasts, potentially contributing to bone resorption in vivo.

Growth Competition between Trichoderma harzianum and Fusarium solani on a Plant Residue in Non-Sterile Soil (토양 식물 잔사에서 Trichoderma harzianum에 의한 식물 병원균 Fusarium solani의 성장 저해)

  • Kim, Tae Gwan;Knudsen, Guy R.
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.540-549
    • /
    • 2016
  • Plant residues serve as substrates for the proliferation and overwintering of plant pathogenic fungi in soil. Effects of the biocontrol fungus Trichoderma harzianum on the colonization of wheat straw by the plant pathogenic fungus Fusarium solani were investigated under different soil moisture regimes (-50 vs. -500 kPa) in non-sterile soil. T. harzianum ThzID1-M3 and/or F. solani were added along with wheat straw to non-sterile soils. ThzID1-M3, other Trichoderma species, and F. solani were monitored for a 21-day period using quantitative PCR. ThzID1-M3 reduced the colonization of F. solani on wheat straw (p < 0.05) under both moisture regimes, and F. solani reduced the colonization by ThzID1-M3 and other Trichoderma species (p < 0.05), thus suggesting competitive inhibition between ThzID1-M3 and F. solani. Colonization by ThzID1-M3 and generic Trichoderma was improved in the wet soil (p < 0.05), but colonization by F. solani did not differ between the two moisture conditions. Thus, the inhibitory effect of ThzID1-M3 was greater in the wet soil (p < 0.05). The growth competition between ThzID1-M3 and F. solani to colonize plant debris suggests that the biocontrol fungus T. harzianum may reduce the potential of the plant pathogen, F. solani, to survive and proliferate on crops.

Application of Lignocellulosic and Macro-algae Hydrolysates for Culture of Chlorella saccharophila (Chlorella saccharophila 배양을 위한 목질계 및 해조류 바이오매스 가수분해물의 이용)

  • Kim, A-Ram;Kim, Hyo Seon;Park, Mi-Ra;Kim, Sung-Koo;Jeong, Gwi-Taek
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.522-528
    • /
    • 2016
  • In this study, we investigated the possibility of using hydrolysates of lignocellulosics (rapeseed straw, barley straw, rice straw) and marine macro-algae (Undaria pinnatifida, Laminaria japonica, Enteromorpha intestinalis, and Gracilaria verrucosa) to cultivate Chlorella saccharophila. The growth of C. saccharophila was inhibited by 7 hydrolysates without active carbon treatment. In contrast, hydrolysates treated with active carbon increased the cell growth and product (oil and chlorophyll) formation by C. saccharophila. The oil contents of C. saccharophila treated with each hydrolysate were $41.26{\pm}0.69%$ (glucose), $22.06{\pm}1.21%$ (rapeseed straw), $28.65{\pm}1.08%$ (barley straw), $31.15{\pm}0.76%$ (rice straw), $31.50{\pm}2.12%$ (U. pinnatifida), $31.49{\pm}4.53%$ (L. japonica), $29.63{\pm}3.93%$ (E. intestinalis), and $26.15{\pm}1.99%$ (G. verrucosa), respectively. Lignocellulosics and marine macro-algae may be useful resources for improving the mass cultivation of C. saccharophila.

Efficient (3R)-Acetoin Production from meso-2,3-Butanediol Using a New Whole-Cell Biocatalyst with Co-Expression of meso-2,3-Butanediol Dehydrogenase, NADH Oxidase, and Vitreoscilla Hemoglobin

  • Guo, Zewang;Zhao, Xihua;He, Yuanzhi;Yang, Tianxing;Gao, Huifang;Li, Ganxin;Chen, Feixue;Sun, Meijing;Lee, Jung-Kul;Zhang, Liaoyuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.92-100
    • /
    • 2017
  • Acetoin (AC) is a volatile platform compound with various potential industrial applications. AC contains two stereoisomeric forms: (3S)-AC and (3R)-AC. Optically pure AC is an important potential intermediate and widely used as a precursor to synthesize novel optically active materials. In this study, chiral (3R)-AC production from meso-2,3-butanediol (meso-2,3-BD) was obtained using recombinant Escherichia coli cells co-expressing meso-2,3-butanediol dehydrogenase (meso-2,3-BDH), NADH oxidase (NOX), and hemoglobin protein (VHB) from Serratia sp. T241, Lactobacillus brevis, and Vitreoscilla, respectively. The new biocatalyst of E. coli/pET-mbdh-nox-vgb was developed and the bioconversion conditions were optimized. Under the optimal conditions, 86.74 g/l of (3R)-AC with the productivity of 3.61 g/l/h and the stereoisomeric purity of 97.89% was achieved from 93.73 g/l meso-2,3-BD using the whole-cell biocatalyst. The yield and productivity were new records for (3R)-AC production. The results exhibit the industrial potential for (3R)-AC production via whole-cell biocatalysis.

Characterization of Polyester Cloth as an Alternative Separator to Nafion Membrane in Microbial Fuel Cells for Bioelectricity Generation Using Swine Wastewater

  • Kim, Taeyoung;Kang, Sukwon;Sung, Je Hoon;Kang, Youn Koo;Kim, Young Hwa;Jang, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2171-2178
    • /
    • 2016
  • Polyester cloth (PC) was selected as a prospective inexpensive substitute separator material for microbial fuel cells (MFCs). PC was compared with a traditional Nafion proton exchange membrane (PEM) as an MFC separator by analyzing its physical and electrochemical properties. A single layer of PC showed higher mass transfer (e.g., for $O_2/H^+/ions$) than the Nafion PEM; in the case of oxygen mass transfer coefficient ($k_o$), a rate of $50.0{\times}10^{-5} cm{\cdot}s^{-1}$ was observed compared with a rate of $20.8{\times}10^{-5}cm/s$ in the Nafion PEM. Increased numbers of PC layers were found to reduce the oxygen mass transfer coefficient. In addition, the diffusion coefficient of oxygen ($D_O$) for PC ($2.0-3.3{\times}10^{-6}cm^2/s$) was lower than that of the Nafion PEM ($3.8{\times}10^{-6}cm^2/s$). The PC was found to have a low ohmic resistance ($0.29-0.38{\Omega}$) in the MFC, which was similar to that of Nafion PEM ($0.31{\Omega}$); this resulted in comparable maximum power density and maximum current density in MFCs with PC and those with Nafion PEMs. Moreover, a higher average current generation was observed in MFCs with PC ($104.3{\pm}15.3A/m^3$) compared with MFCs with Nafion PEM ($100.4{\pm}17.7A/m^3$), as well as showing insignificant degradation of the PC surface, during 177 days of use in swine wastewater. These results suggest that PC separators could serve as a low-cost alternative to Nafion PEMs for construction of cost-effective MFCs.

Isolation, Purification, and Characterization of Five Active Diketopiperazine Derivatives from Endophytic Streptomyces SUK 25 with Antimicrobial and Cytotoxic Activities

  • Alshaibani, Muhanna M.;MohamadZin, Noraziah;Jalil, Juriyati;Sidik, Nik Marzuki;Ahmad, Siti Junaidah;Kamal, Nurkhalida;Edrada-Ebel, RuAngelie
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1249-1256
    • /
    • 2017
  • In our search for new sources of bioactive secondary metabolites from Streptomyces sp., the ethyl acetate extracts from endophytic Streptomyces SUK 25 afforded five active diketopiperazine (DKP) compounds. The aim of this study was to characterize the bioactive compounds isolated from endophytic Streptomyces SUK 25 and evaluate their bioactivity against multiple drug resistance (MDR) bacteria such as Enterococcus raffinosus, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp., and their cytotoxic activities against the human hepatoma (HepaRG) cell line. The production of secondary metabolites by this strain was optimized through Thornton's medium. Isolation, purification, and identification of the bioactive compounds were carried out using high-performance liquid chromatography, high-resolution mass liquid chromatography-mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, and cryopreserved HepaRG cells were selected to test the cytotoxicity. The results showed that endophytic Streptomyces SUK 25 produces four active DKP compounds and an acetamide derivative, which were elucidated as $cyclo-({\text\tiny{L}}-Val-{\text\tiny{L}}-Pro)$, $cyclo-({\text\tiny{L}}-Leu-{\text\tiny{L}}-Pro)$, $cyclo-({\text\tiny{L}}-Phe-{\text\tiny{L}}-Pro)$, $cyclo-({\text\tiny{L}}-Val-{\text\tiny{L}}-Phe)$, and N-(7-hydroxy-6-methyl-octyl)-acetamide. These active compounds exhibited activity against methicillin-resistant S. aureus ATCC 43300 and Enterococcus raffinosus, with low toxicity against human hepatoma HepaRG cells. Endophytic Streptomyces SUK 25 has the ability to produce DKP derivatives biologically active against some MDR bacteria with relatively low toxicity against HepaRG cells line.

Effects of Simulated Acid Rain on Soil Chemical Properties (인공산성비 처리가 토양의 화학적 성질에 미치는 영향)

  • Ryu, Kwan-Shig
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.400-406
    • /
    • 1998
  • To investigate the effect of simulated acid rain on the change in soil chemical properties, simulated acid rain of different pH was applied to the three soils of different texture. Simulated acid rain of pH 4.0 and 6.0 did not greatly change the soil pH, while simulated acid rain of pH 2.0 decreased greatly the soil pH. Decrease in soil pH were in the order of sandy loam > loam > clay loam, while increase in exchangeable acidity was in the order of clay loam > loam > sandy loam. Amount of nutrients leached downward due to the penetration of simulated acid rain into the soil was in the order of Ca > K > Mg. Exchangeable Al was not detected when soil acidity dropped to pH 5 and exchangeable acidity increased within a range of CEC. A total 1200mm of simulated acid rain(pH 3.0) can load $12kg\;ha^{-1}$ of $H^+$ ion, $128kg\;ha^{-1}$ of sulfur, $56kg\;ha^{-1}$ of nitrogen. The acidity of simulated acid rain pH 3.0 can be neutralized by addition of $444kg\;ha^{-1}$ of slaked lime. The amount of leached bases were equivalent to 923, 1731 and $1608kg{\cdot}ha^{-1}$ in sandy loam, loam and clay loam soil respectively.

  • PDF

Factors Influencing the Safety Consciousness and Health status of the Young-old and Old-old elderly on Injury Occurrence Analysis (전기-후기노인의 안전의식 및 건강요인이 손상 및 손상기전에 미치는 영향)

  • Kim, Chang-Hwan
    • Journal of the Health Care and Life Science
    • /
    • v.8 no.2
    • /
    • pp.155-163
    • /
    • 2020
  • The purpose of this study is to examine the current status of the Injury based on the 7th National Data on the National Health and Nutrition Survey, identify the relationship between general characteristics, safety awareness, health status, injury, and identify the factors that affect the occurrence of injury. The subjects were selected for the final analysis of 1,608data. For the analysis, frequency analysis, cross analysis, and multiple logistic regression analysis were performed. the results of the study show that in the young-old elderly, gender(woman), marital status(separated of divorced), lower the awareness of safety, body discomfort, sickness, and in-outpatient, Annual unmet medical service experienced are higher the occurrence of injury. Therefore, as a prevention education that lowers the incidence of injury. selective education is required for the Young-old and Old-old elderly, and legal penalties for drunk driving on various means of transportation and an integrated approach to strengthening and education is required.