• Title/Summary/Keyword: *-linked overring

Search Result 5, Processing Time 0.016 seconds

t-LINKED OVERRINGS OF A NOETHERIAN DOMAIN

  • Chang, Gyu-Whan
    • Korean Journal of Mathematics
    • /
    • v.7 no.2
    • /
    • pp.167-169
    • /
    • 1999
  • Let R be a Noetherian domain. It is proved that $t$-dimR = 1 if and only if each (proper if R is not a valuation domain) $t$-linked overring D of R is of $t$-dimD = 1 if and only if each integrally closed $t$-linked overring of R is a Krull domain.

  • PDF

SOME EXAMPLES OF ALMOST GCD-DOMAINS

  • Chang, Gyu Whan
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.601-607
    • /
    • 2011
  • Let D be an integral domain, X be an indeterminate over D, and D[X] be the polynomial ring over D. We show that D is an almost weakly factorial PvMD if and only if D + XDS[X] is an integrally closed almost GCD-domain for each (saturated) multiplicative subset S of D, if and only if $D+XD_1[X]$ is an integrally closed almost GCD-domain for any t-linked overring $D_1$ of D, if and only if $D_1+XD_2[X]$ is an integrally closed almost GCD-domain for all t-linked overrings $D_1{\subseteq}D_2$ of D.

OVERRINGS OF t-COPRIMELY PACKED DOMAINS

  • Kim, Hwan-Koo
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.191-205
    • /
    • 2011
  • It is well known that for a Krull domain R, the divisor class group of R is a torsion group if and only if every subintersection of R is a ring of quotients. Thus a natural question is that under what conditions, for a non-Krull domain R, every (t-)subintersection (resp., t-linked overring) of R is a ring of quotients or every (t-)subintersection (resp., t-linked overring) of R is at. To address this question, we introduce the notions of *-compact packedness and *-coprime packedness of (an ideal of) an integral domain R for a star operation * of finite character, mainly t or w. We also investigate the t-theoretic analogues of related results in the literature.

A NOTE ON w-GD DOMAINS

  • Zhou, Dechuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1351-1365
    • /
    • 2020
  • Let S and T be w-linked extension domains of a domain R with S ⊆ T. In this paper, we define what satisfying the wR-GD property for S ⊆ T means and what being wR- or w-GD domains for T means. Then some sufficient conditions are given for the wR-GD property and wR-GD domains. For example, if T is wR-integral over S and S is integrally closed, then the wR-GD property holds. It is also given that S is a wR-GD domain if and only if S ⊆ T satisfies the wR-GD property for each wR-linked valuation overring T of S, if and only if S ⊆ (S[u])w satisfies the wR-GD property for each element u in the quotient field of S, if and only if S𝔪 is a GD domain for each maximal wR-ideal 𝔪 of S. Then we focus on discussing the relationship among GD domains, w-GD domains, wR-GD domains, Prüfer domains, PνMDs and PwRMDs, and also provide some relevant counterexamples. As an application, we give a new characterization of PwRMDs. We show that S is a PwRMD if and only if S is a wR-GD domain and every wR-linked overring of S that satisfies the wR-GD property is wR-flat over S. Furthermore, examples are provided to show these two conditions are necessary for PwRMDs.

OVERRINGS OF THE KRONECKER FUNCTION RING Kr(D, *) OF A PRUFER *-MULTIPLICATION DOMAIN D

  • Chang, Gyu-Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.1013-1018
    • /
    • 2009
  • Let * be an e.a.b. star operation on an integrally closed domain D, and let $K\gamma$(D, *) be the Kronecker function ring of D. We show that if D is a P*MD, then the mapping $D_{\alpha}{\mapsto}K{\gamma}(D_{\alpha},\;{\upsilon})$ is a bijection from the set {$D_{\alpha}$} of *-linked overrings of D into the set of overrings of $K{\gamma}(D,\;{\upsilon})$. This is a generalization of [5, Proposition 32.19] that if D is a Pr$\ddot{u}$fer domain, then the mapping $D_{\alpha}{\mapsto}K_{\gamma}(D_{\alpha},\;b)$ is a one-to-one mapping from the set {$D_{\alpha}$} of overrings of D onto the set of overrings of $K_{\gamma}$(D, b).