• 제목/요약/키워드: (quasi-)projective

검색결과 24건 처리시간 0.018초

SOME ASPECTS OF ZARISKI TOPOLOGY FOR MULTIPLICATION MODULES AND THEIR ATTACHED FRAMES AND QUANTALES

  • Castro, Jaime;Rios, Jose;Tapia, Gustavo
    • 대한수학회지
    • /
    • 제56권5호
    • /
    • pp.1285-1307
    • /
    • 2019
  • For a multiplication R-module M we consider the Zariski topology in the set Spec (M) of prime submodules of M. We investigate the relationship between the algebraic properties of the submodules of M and the topological properties of some subspaces of Spec (M). We also consider some topological aspects of certain frames. We prove that if R is a commutative ring and M is a multiplication R-module, then the lattice Semp (M/N) of semiprime submodules of M/N is a spatial frame for every submodule N of M. When M is a quasi projective module, we obtain that the interval ${\uparrow}(N)^{Semp}(M)=\{P{\in}Semp(M){\mid}N{\subseteq}P\}$ and the lattice Semp (M/N) are isomorphic as frames. Finally, we obtain results about quantales and the classical Krull dimension of M.

유사 특징점을 이용한 모자이킹 영상의 구성 (Construction of 2D Image Mosaics Using Quasi-feature Point)

  • 김대현;최종수
    • 대한전자공학회논문지SP
    • /
    • 제38권4호
    • /
    • pp.381-391
    • /
    • 2001
  • 본 논문은 영상 시퀸스로부터 이미지 모자이킹의 구성을 위한 효율적인 알고리즘을 기술한다. 영상의 기하학적인 특징을 이용하거나 비선형 방정식을 풀었던 기존의 알고리즘과는 달리, 제안한 알고리즘은 4개의 유사특징점을 이용해 영상간 사영 변환식의 8개 파라미터를 직접 계산한다. 본 논문에서 정의된 유사특징점은 영상의 그레이레벨의 분산을 기반으로 하고, 두 영상의 중첩 영역에서만 결정된다. 또한 선택된 4개의 유사특징점에 대한 대응점 검출을 위해 카메라 이동 및 조명 변화에 의한 영상의 변화를 고려한 블록 정합 알고리즘을 적용한다. 제안된 알고리즘은 다양한 영상에 적용하여 그 성능을 평가하였다. 모의 실험 결과는 제안된 알고리즘이 기존의 알고리즘에 비해 계산량을 감소시키면서, 정확한 사영 변환식을 유도하여 모자이킹 영상을 구성하는 것을 보여주고 있다.

  • PDF

STALE REDUCTIONS OF SINGULAR PLANE QUARTICS

  • Kang, Pyung-Lyun
    • 대한수학회논문집
    • /
    • 제9권4호
    • /
    • pp.905-915
    • /
    • 1994
  • Let $M_g$ be the moduli space of isomorphism classes of genus g smooth curves. It is a quasi-projective variety of dimension 3g - 3, when $g > 2$. It is known that a complete subvariety of $M_g$ has dimension $< g-1 [D]$. In general it is not known whether this bound is rigid. For example, it is not known whether $M_4$ has a complete surface in it. But one knows that there is a complete curve through any given finite points [H]. Recently, an explicit example of a complete curve in moduli space is given in [G-H]. In [G-H] they constructed a complete curve of $M_3$ as an intersection of five hypersurfaces of the Satake compactification of $M_3$. One way to get a complete curve of $M_3$ is to find a complete one dimensional family $p : X \to B$ of plane quartics which gives a nontrivial morphism from the base space B to the moduli space $M_3$. This is because every non-hyperelliptic smooth curve of genus three can be realized as a nonsingular plane quartic and vice versa. This paper has come out from the effort to find such a complete family of plane quartics. Since nonsingular quartics form an affine space some fibers of p must be singular ones. In this paper, due to the semistable reduction theorem [M], we search singular plane quartics which can occur as singular fibers of the family above. We first list all distinct plane quartics in terms of singularities.

  • PDF

ON INJECTIVITY AND P-INJECTIVITY, IV

  • Chi Ming, Roger Yue
    • 대한수학회보
    • /
    • 제40권2호
    • /
    • pp.223-234
    • /
    • 2003
  • This note contains the following results for a ring A : (1) A is simple Artinian if and only if A is a prime right YJ-injective, right and left V-ring with a maximal right annihilator ; (2) if A is a left quasi-duo ring with Jacobson radical J such that $_{A}$A/J is p-injective, then the ring A/J is strongly regular ; (3) A is von Neumann regular with non-zero socle if and only if A is a left p.p.ring containing a finitely generated p-injective maximal left ideal satisfying the following condition : if e is an idempotent in A, then eA is a minimal right ideal if and only if Ae is a minimal left ideal ; (4) If A is left non-singular, left YJ-injective such that each maximal left ideal of A is either injective or a two-sided ideal of A, then A is either left self-injective regular or strongly regular : (5) A is left continuous regular if and only if A is right p-injective such that for every cyclic left A-module M, $_{A}$M/Z(M) is projective. ((5) remains valid if 《continuous》 is replaced by 《self-injective》 and 《cyclic》 is replaced by 《finitely generated》. Finally, we have the following two equivalent properties for A to be von Neumann regula. : (a) A is left non-singular such that every finitely generated left ideal is the left annihilator of an element of A and every principal right ideal of A is the right annihilator of an element of A ; (b) Change 《left non-singular》 into 《right non-singular》in (a).(a).