• 제목/요약/키워드: (p, q)-analogue of Euler zeta function

검색결과 3건 처리시간 0.014초

ON THE (p, q)-ANALOGUE OF EULER ZETA FUNCTION

  • RYOO, CHEON SEOUNG
    • Journal of applied mathematics & informatics
    • /
    • 제35권3_4호
    • /
    • pp.303-311
    • /
    • 2017
  • In this paper we define (p, q)-analogue of Euler zeta function. In order to define (p, q)-analogue of Euler zeta function, we introduce the (p, q)-analogue of Euler numbers and polynomials by generalizing the Euler numbers and polynomials, Carlitz's type q-Euler numbers and polynomials. We also give some interesting properties, explicit formulas, a connection with (p, q)-analogue of Euler numbers and polynomials. Finally, we investigate the zeros of the (p, q)-analogue of Euler polynomials by using computer.

SYMMETRIC IDENTITIES INVOLVING THE MODIFIED (p, q)-HURWITZ EULER ZETA FUNCTION

  • KIM, A HYUN;AN, CHAE KYEONG;LEE, HUI YOUNG
    • Journal of applied mathematics & informatics
    • /
    • 제36권5_6호
    • /
    • pp.555-565
    • /
    • 2018
  • The main subject of this paper is to introduce the (p, q)-Euler polynomials and obtain several interesting symmetric properties of the modified (p, q)-Hurwitz Euler Zeta function with regard to (p, q) Euler polynomials. In order to get symmetric properties, we introduce the new (p, q)-analogue of Euler polynomials $E_{n,p,q}(x)$ and numbers $E_{n,p,q}$.

SOME EXPLICIT PROPERTIES OF (p, q)-ANALOGUE EULER SUM USING (p, q)-SPECIAL POLYNOMIALS

  • KANG, J.Y.
    • Journal of applied mathematics & informatics
    • /
    • 제38권1_2호
    • /
    • pp.37-56
    • /
    • 2020
  • In this paper we discuss some interesting properties of (p, q)-special polynomials and derive various relations. We gain some relations between (p, q)-zeta function and (p, q)-special polynomials by considering (p, q)-analogue Euler sum types. In addition, we derive the relationship between (p, q)-polylogarithm function and (p, q)-special polynomials.