• Title/Summary/Keyword: (non)arbitrary

Search Result 338, Processing Time 0.024 seconds

3D traveltime calculation considering seismic velocity anisotropy (탄성파 속도 이방성을 고려한 3차원 주시 모델링)

  • Jeong, Chang-Ho;Suh, Jung-Hee
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.203-208
    • /
    • 2007
  • Due to the long tectonic history and the very complex geologic formations in Korea, the anisotropic characteristics of subsurface material may often change very greatly and locally. The algorithms for the travel time computation commonly used, however, may not give sufficiently precise results particularly for the complex and strong anisotropic model, since they are based on the two-dimensional (2D) earth and/or weak anisotropy assumptions. This study is intended to develope a three-dimensional (3D) modeling algorithm to precisely calculate the first arrival time in the complex anisotropic media. We assume 3D TTI (tilted transversely isotropy) medium having the arbitrary symmetry axis. The algorithm includes the 2D non-linear interpolation scheme to calculate the traveltimes inside the grid and the 3D traveltime mapping to fill the 3D model with first arrival times. The weak anisotropy assumption, moreover, can be overcome through devising a numerical approach of the steepest descent method in the calculation of minimum traveltime, instead of using approximate solution.

  • PDF

Auto-tuning of PID controller using Neural Networks and Model Reference Adaptive control (신경망을 이용한 PID 제어기의 자동동조 및 기준모델 적응제어)

  • Kim, S.T.;Kim, J.S.;Seo, Y.O.;Park, S.J.;Hong, Y.C.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2299-2301
    • /
    • 2000
  • In this paper, the design of PID controller using Neural networks for the control of non-linear system is presented. First, non-linear system is identified using BPN(Backpropagation Network) algorithm. This identified model is connected to the PID controller and the parameters of PID controller are updated to the direction of reducing the difference between the identified model output and model reference output in arbitrary input signal. Therefore, identified model output tracks the model reference output in an acceptable error range and the parameters of controller are updated adaptively. The output of the system has a good performance in case of both noisy and noiseless model reference and we can control the system stable in off-line when the dynamics of the system is changed.

  • PDF

Composites Fatigue Life Evaluation based on non-linear fatigue damage model (비선형 피로손상 모델을 이용한 복합재 피로수명 평가)

  • 김성준;황인희
    • Composites Research
    • /
    • v.16 no.1
    • /
    • pp.13-18
    • /
    • 2003
  • Prediction of composite fatigue life is not a straightforward matter, depending on various failure modes and their interactions. In this paper, a methodology is presented to predict fatigue life and residual strength of composite materials based on Phenomenological Model(non-linear fatigue damage model). It is assumed that the residual strength is a monotonically decreasing function of the number of loading cycles and applied fatigue stress ratio and the model parameters(strength degradation parameter and fatigue shape parameter) are assumed as function of fatigue life. Then S-N curve is used to extract model parameters that are required to characterize the stress levels comprising a randomly-ordered load spectrum. Different stress ratios (${\sigma}_{min}/{\;}{\sigma}_{max}$) are handled with Goodman correction approach(fatigue envelope) and the residual strength after an arbitrary load cycles is represented by two parameter weibull functions.

Scalar Multiplication on Elliptic Curves by Frobenius Expansions

  • Cheon, Jung-Hee;Park, Sang-Joon;Park, Choon-Sik;Hahn, Sang-Geun
    • ETRI Journal
    • /
    • v.21 no.1
    • /
    • pp.28-39
    • /
    • 1999
  • Koblitz has suggested to use "anomalous" elliptic curves defined over ${\mathbb{F}}_2$, which are non-supersingular and allow or efficient multiplication of a point by and integer, For these curves, Meier and Staffelbach gave a method to find a polynomial of the Frobenius map corresponding to a given multiplier. Muller generalized their method to arbitrary non-supersingular elliptic curves defined over a small field of characteristic 2. in this paper, we propose an algorithm to speed up scalar multiplication on an elliptic curve defined over a small field. The proposed algorithm uses the same field. The proposed algorithm uses the same technique as Muller's to get an expansion by the Frobenius map, but its expansion length is half of Muller's due to the reduction step (Algorithm 1). Also, it uses a more efficient algorithm (Algorithm 3) to perform multiplication using the Frobenius expansion. Consequently, the proposed algorithm is two times faster than Muller's. Moreover, it can be applied to an elliptic curve defined over a finite field with odd characteristic and does not require any precomputation or additional memory.

  • PDF

Fractional-Order Derivatives and Integrals: Introductory Overview and Recent Developments

  • Srivastava, Hari Mohan
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.1
    • /
    • pp.73-116
    • /
    • 2020
  • The subject of fractional calculus (that is, the calculus of integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past over four decades, due mainly to its demonstrated applications in numerous seemingly diverse and widespread fields of mathematical, physical, engineering and statistical sciences. Various operators of fractional-order derivatives as well as fractional-order integrals do indeed provide several potentially useful tools for solving differential and integral equations, and various other problems involving special functions of mathematical physics as well as their extensions and generalizations in one and more variables. The main object of this survey-cum-expository article is to present a brief elementary and introductory overview of the theory of the integral and derivative operators of fractional calculus and their applications especially in developing solutions of certain interesting families of ordinary and partial fractional "differintegral" equations. This general talk will be presented as simply as possible keeping the likelihood of non-specialist audience in mind.

Defect-free 4-node flat shell element: NMS-4F element

  • Choi, Chang-Koon;Lee, Phill-Seung;Park, Yong-Myung
    • Structural Engineering and Mechanics
    • /
    • v.8 no.2
    • /
    • pp.207-231
    • /
    • 1999
  • A versatile 4-node shell element which is useful for the analysis of arbitrary shell structures is presented. The element is developed by flat shell approach, i.e., by combining a membrane element with a Mindlin plate element. The proposed element has six degrees of freedom per node and permits an easy connection to other types of finite elements. In the plate bending part, an improved Mindlin plate has been established by the combined use of the addition of non-conforming displacement modes (N) and the substitute shear strain fields (S). In the membrane part, the nonconforming displacement modes are also added to the displacement fields to improve the behavior of membrane element with drilling degrees of freedom and the modified numerical integration (M) is used to overcome the membrane locking problem. Thus the element is designated as NMS-4F. The rigid link correction technique is adopted to consider the effect of out-of-plane warping. The shell element proposed herein passes the patch tests, does not show any spurious mechanism and does not produce shear and membrane locking phenomena. It is shown that the element produces reliable solutions even for the distorted meshes through the analysis of benchmark problems.

Synthesis of CoO/Co(OH)2 Nanosheets Depending on Reaction Temperatures (반응 온도에 따른 CoO/Co(OH)2 나노시트의 합성)

  • Minjeong Lee;Gayoung Yoon;Gyeong Hee Ryu
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.222-228
    • /
    • 2023
  • Transition metal oxides formed by a single or heterogeneous combination of transition metal ions and oxygen ions have various types of crystal structures, which can be classified as layered structures and non-layered structures. With non-layered structures, it is difficult to realize a two-dimensional structure using conventional synthesis methods. In this study, we report the synthesis of cobalt oxide into wafer-scale nanosheets using a surfactant-assisted method. A monolayer of ionized surfactant at the water-air interface acts as a flexible template for direct cobalt oxide crystallization below. The nanosheets synthesized on the water surface can be easily transferred to an arbitrary substrate. In addition, the synthesizing morphological and crystal structures of the nanosheets were analyzed according to the reaction temperatures. The electrochemical properties of the synthesized nanosheets were also measured at each temperature. The nanosheets synthesized at 70 ℃ exhibited higher catalytic properties for the oxygen evolution reaction than those synthesized at other temperatures. This work suggests the possibility of changing material performance by adjusting synthesis temperature when synthesizing 2D nanomaterials using a wide range of functional oxides, resulting in improved physical properties.

System-Level Fault Diagnosis using Graph Partitioning (그래프 분할을 이용한 시스템 레벨 결함 진단 기법)

  • Jeon, Gwang-Il;Jo, Yu-Geun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.12
    • /
    • pp.1447-1457
    • /
    • 1999
  • 본 논문에서는 일반적인 네트워크에서 적응력 있는(adaptive) 분산형 시스템 레벨 결함 진단을 위한 분할 기법을 제안한다. 적응력 있는 분산형 시스템 레벨 결함 진단 기법에서는 시스템의 형상이 변경될 때마다 시험 할당 알고리즘이 수행되므로 적응력 없는 결함 진단 기법에 비하여 결함 감지를 위한 시험의 갯수를 줄일 수 있다. 기존의 시험 할당 알고리즘들은 전체 시스템을 대상으로 하는 비분할(non-partitioning) 방식을 이용하였는데, 이 기법은 불필요한 과다한 메시지를 생성한다. 본 논문에서는 전체 시스템을 이중 연결 요소(biconnected component) 단위로 분할한 후, 시험 할당은 각 이중 연결 요소 내에서 수행한다. 이중 연결 요소의 관절점(articulation point)의 특성을 이용하여 각 시험 할당에 필요한 노드의 수를 줄임으로서, 비분할 기법들에 비해 초기 시험 할당에 필요한 메시지의 수를 감소시켰다. 또한 결함이 발생한 경우나 복구가 완료된 경우의 시험 재 할당은 직접 영향을 받는 이중 연결 요소내로 국지화(localize) 시켰다. 본 논문의 시스템 레벨 결함 진단 기법의 정확성을 증명하였으며, 기존 비분할 방식의 시스템 레벨 결함 진단 기법과의 성능 분석을 수행하였다.Abstract We propose an adaptive distributed system-level diagnosis using partitioning method in arbitrary network topologies. In an adaptive distributed system-level diagnosis, testing assignment algorithm is performed whenever the system configuration is changed to reduce the number of tests in the system. Existing testing assignment algorithms adopt a non-partitioning approach covering the whole system, so they incur unnecessary extra message traffic and time. In our method, the whole system is partitioned into biconnected components, and testing assignment is performed within each biconnected component. By exploiting the property of an articulation point of a biconnected component, initial testing assignment of our method performs better than non-partitioning approach by reducing the number of nodes involved in testing assignment. It also localizes the testing reassignment caused by system reconfiguration within the related biconnected components. We show that our system-level diagnosis method is correct and analyze the performance of our method compared with the previous non-partitioning ones.

Past records for the application of arbitrary accomplice regulations to Accomplice-essential crimes

  • Park, Jong-Ryeol;Noe, Sang-Ouk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.3
    • /
    • pp.149-155
    • /
    • 2022
  • The view of not fully denying the application of accomplice regulations to non-punishable opponents has fallen into a formal and logical circular argument that only provides formal grounds for non-punishment and has failed to provide practical grounds. In addition, it can be said that it has a criminal policy problem contrary to the legal sentiment of the general public by not punishing the active government travel activities of non-punishable accomplices. Therefore, in order to solve this problem, it is necessary to respect the legislator's intention that general non-punishment accomplices can be punished if they exceed the 'minimum government travel commission'. Therefore, if an unpunishable accomplice acts at least within the act required to realize the constituent requirements, the application of the accomplice regulations shall be excluded, and the accomplice regulations shall be applied only if they exceed that extent. In addition, if the indispensable counterparty is a protected person or has no responsibility (possibility of expectation), it can be said that it has provided a practical basis for the inability to punish, so it can be understood as impossible to punish. This interpretation method is thought to be able to present concrete validity in marginal cases where the counterparty is more responsible by substantially presenting the basis for an unpunishable accomplice.

Malicious Code Injection Vulnerability Analysis in the Deflate Algorithm (Deflate 압축 알고리즘에서 악성코드 주입 취약점 분석)

  • Kim, Jung-hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.5
    • /
    • pp.869-879
    • /
    • 2022
  • Through this study, we discovered that among three types of compressed data blocks generated through the Deflate algorithm, No-Payload Non-Compressed Block type (NPNCB) which has no literal data can be randomly generated and inserted between normal compressed blocks. In the header of the non-compressed block, there is a data area that exists only for byte alignment, and we called this area as DBA (Disposed Bit Area), where an attacker can hide various malicious codes and data. Finally we found the vulnerability that hides malicious codes or arbitrary data through inserting NPNCBs with infected DBA between normal compressed blocks according to a pre-designed attack scenario. Experiments show that even though contaminated NPNCB blocks were inserted between normal compressed blocks, commercial programs decoded normally contaminated zip file without any warning, and malicious code could be executed by the malicious decoder.