• Title/Summary/Keyword: (m, n)-ideal

Search Result 181, Processing Time 0.024 seconds

THE JACOBI SUMS OVER GALOIS RINGS AND ITS ABSOLUTE VALUES

  • Jang, Young Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.571-583
    • /
    • 2020
  • The Galois ring R of characteristic pn having pmn elements is a finite extension of the ring of integers modulo pn, where p is a prime number and n, m are positive integers. In this paper, we develop the concepts of Jacobi sums over R and under the assumption that the generating additive character of R is trivial on maximal ideal of R, we obtain the basic relationship between Gauss sums and Jacobi sums, which allows us to determine the absolute value of the Jacobi sums.

A REMARK ON MULTIPLICATION MODULES

  • Choi, Chang-Woo;Kim, Eun-Sup
    • Bulletin of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.163-165
    • /
    • 1994
  • Modules which satisfy the converse of Schur's lemma have been studied by many authors. In [6], R. Ware proved that a projective module P over a semiprime ring R is irreducible if and only if En $d_{R}$(P) is a division ring. Also, Y. Hirano and J.K. Park proved that a torsionless module M over a semiprime ring R is irreducible if and only if En $d_{R}$(M) is a division ring. In case R is a commutative ring, we obtain the following: An R-module M is irreducible if and only if En $d_{R}$(M) is a division ring and M is a multiplication R-module. Throughout this paper, R is commutative ring with identity and all modules are unital left R-modules. Let R be a commutative ring with identity and let M be an R-module. Then M is called a multiplication module if for each submodule N of M, there exists and ideal I of R such that N=IM. Cyclic R-modules are multiplication modules. In particular, irreducible R-modules are multiplication modules.dules.

  • PDF

ON NOETHERIAN PSEUDO-PRIME SPECTRUM OF A TOPOLOGICAL LE-MODULE

  • Anjan Kumar Bhuniya;Manas Kumbhakar
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • An le-module M over a commutative ring R is a complete lattice ordered additive monoid (M, ⩽, +) having the greatest element e together with a module like action of R. This article characterizes the le-modules RM such that the pseudo-prime spectrum XM endowed with the Zariski topology is a Noetherian topological space. If the ring R is Noetherian and the pseudo-prime radical of every submodule elements of RM coincides with its Zariski radical, then XM is a Noetherian topological space. Also we prove that if R is Noetherian and for every submodule element n of M there is an ideal I of R such that V (n) = V (Ie), then the topological space XM is spectral.

FINITENESS PROPERTIES OF EXTENSION FUNCTORS OF COFINITE MODULES

  • Irani, Yavar;Bahmanpour, Kamal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.2
    • /
    • pp.649-657
    • /
    • 2013
  • Let R be a commutative Noetherian ring, I an ideal of R and T be a non-zero I-cofinite R-module with dim(T) ${\leq}$ 1. In this paper, for any finitely generated R-module N with support in V(I), we show that the R-modules $Ext^i_R$(T,N) are finitely generated for all integers $i{\geq}0$. This immediately implies that if I has dimension one (i.e., dim R/I = 1), then $Ext^i_R$($H^j_I$(M), N) is finitely generated for all integers $i$, $j{\geq}0$, and all finitely generated R-modules M and N, with Supp(N) ${\subseteq}$ V(I).

On Two Versions of Cohen's Theorem for Modules

  • Xiaolei Zhang;Wei Qi;Hwankoo Kim
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.1
    • /
    • pp.29-36
    • /
    • 2023
  • Parkash and Kour obtained a new version of Cohen's theorem for Noetherian modules, which states that a finitely generated R-module M is Noetherian if and only if for every prime ideal 𝔭 of R with Ann(M) ⊆ 𝔭, there exists a finitely generated submodule N𝔭 of M such that 𝔭M ⊆ N𝔭 ⊆ M(𝔭), where M(𝔭) = {x ∈ M | sx ∈ 𝔭M for some s ∈ R \ 𝔭}. In this paper, we generalize the Parkash and Kour version of Cohen's theorem for Noetherian modules to S-Noetherian modules and w-Noetherian modules.

STRUCTURE OF THE FLAT COVERS OF ARTINIAN MODULES

  • Payrovi, S.H.
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.4
    • /
    • pp.611-620
    • /
    • 2002
  • The aim of the Paper is to Obtain information about the flat covers and minimal flat resolutions of Artinian modules over a Noetherian ring. Let R be a commutative Noetherian ring and let A be an Artinian R-module. We prove that the flat cover of a is of the form $\prod_{p\epsilonAtt_R(A)}T-p$, where $Tp$ is the completion of a free R$_{p}$-module. Also, we construct a minimal flat resolution for R/xR-module 0: $_AX$ from a given minimal flat resolution of A, when n is a non-unit and non-zero divisor of R such that A = $\chiA$. This result leads to a description of the structure of a minimal flat resolution for ${H^n}_{\underline{m}}(R)$, nth local cohomology module of R with respect to the ideal $\underline{m}$, over a local Cohen-Macaulay ring (R, $\underline{m}$) of dimension n.

ON OVERRINGS OF GORENSTEIN DEDEKIND DOMAINS

  • Hu, Kui;Wang, Fanggui;Xu, Longyu;Zhao, Songquan
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.991-1008
    • /
    • 2013
  • In this paper, we mainly discuss Gorenstein Dedekind do-mains (G-Dedekind domains for short) and their overrings. Let R be a one-dimensional Noetherian domain with quotient field K and integral closure T. Then it is proved that R is a G-Dedekind domain if and only if for any prime ideal P of R which contains ($R\;:_K\;T$), P is Gorenstein projective. We also give not only an example to show that G-Dedekind domains are not necessarily Noetherian Warfield domains, but also a definition for a special kind of domain: a 2-DVR. As an application, we prove that a Noetherian domain R is a Warfield domain if and only if for any maximal ideal M of R, $R_M$ is a 2-DVR.

NONNIL-S-COHERENT RINGS

  • Najib Mahdou;El Houssaine Oubouhou
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.45-58
    • /
    • 2024
  • Let R be a commutative ring with identity. If the nilpotent radical N il(R) of R is a divided prime ideal, then R is called a ϕ-ring. Let R be a ϕ-ring and S be a multiplicative subset of R. In this paper, we introduce and study the class of nonnil-S-coherent rings, i.e., the rings in which all finitely generated nonnil ideals are S-finitely presented. Also, we define the concept of ϕ-S-coherent rings. Among other results, we investigate the S-version of Chase's result and Chase Theorem characterization of nonnil-coherent rings. We next study the possible transfer of the nonnil-S-coherent ring property in the amalgamated algebra along an ideal and the trivial ring extension.

Studies on the Anionic Copolymerization of Isocyanates (Isocyanates의 음이온 공중합에 관한 연구)

  • Lee, Dong-Choo
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.371-377
    • /
    • 1973
  • The low temperature anionic copolymerization of p-tolylisocyanate ($M_1$) with n-hexylisocyanate ($M_2$) in DMF was carried out with NaCN. Copolymers were characterized by osmometry and I. R. spectrophotometry. Also copolymer composition was analyzed by spectral measurements. The behavior of this copolymerization system was the type of less ideal, that is the $M_2$ prefers to react exclusively with the same kind of species. The stress-strain behavior of the copolymer obtained from equimolar comonomer feed exhibited somewhat brittle or rigid character.

  • PDF

Low-dimensional modelling of n-type doped silicene and its carrier transport properties for nanoelectronic applications

  • Chuan, M.W.;Lau, J.Y.;Wong, K.L.;Hamzah, A.;Alias, N.E.;Lim, C.S.;Tan, M.L.P
    • Advances in nano research
    • /
    • v.10 no.5
    • /
    • pp.415-422
    • /
    • 2021
  • Silicene, a 2D allotrope of silicon, is predicted to be a potential material for future transistor that might be compatible with present silicon fabrication technology. Similar to graphene, silicene exhibits the honeycomb lattice structure. Consequently, silicene is a semimetallic material, preventing its application as a field-effect transistor. Therefore, this work proposes the uniform doping bandgap engineering technique to obtain the n-type silicene nanosheet. By applying nearest neighbour tight-binding approach and parabolic band assumption, the analytical modelling equations for band structure, density of states, electrons and holes concentrations, intrinsic electrons velocity, and ideal ballistic current transport characteristics are computed. All simulations are done by using MATLAB. The results show that a bandgap of 0.66 eV has been induced in uniformly doped silicene with phosphorus (PSi3NW) in the zigzag direction. Moreover, the relationships between intrinsic velocity to different temperatures and carrier concentration are further studied in this paper. The results show that the ballistic carrier velocity of PSi3NW is independent on temperature within the degenerate regime. In addition, an ideal room temperature subthreshold swing of 60 mV/dec is extracted from ballistic current-voltage transfer characteristics. In conclusion, the PSi3NW is a potential nanomaterial for future electronics applications, particularly in the digital switching applications.