• Title/Summary/Keyword: (J-C) model

Search Result 1,575, Processing Time 0.038 seconds

A study of inverse kinematice using numerical methods (수치해석적 방법을 이용한 Inverse Kinematics에 관한 연구)

  • Oh, P.K.;Kang, M.J.;Han, C.G.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.33-39
    • /
    • 1995
  • The inverse Kinematics can be used for representing the motion of human body model. In order to find the final figure of the human body model with given target position, we can uwe the formula x=J .THETA. , where J is the Jacobian matrix of x=f( .THETA.), of the Inverse Kinematics. In this formula, f has so complicated form that it is difficult to calcuate the Jacobian matrix J by expanding all formulae exactly. In this paper, a numerical method that calculates the Jacobian matrix is proosed. The simulation results obtained by using the simple human model reprsent that the proposed. The simulation results obtained by using the simple human model represent that the proposed method is useful for generating the final figure of the body model.

  • PDF

A Study on Topology Processor for Substation Automation (변전소 자동화를 위한 위상구조 처리에 관한 연구)

  • Lee, H.J.;Wang, I.S.;Kang, H.J.;Lee, S.G.;Hong, J.H.;Kim, D.J.;Kang, M.C.;Lim, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.21-22
    • /
    • 2007
  • Topology processing is indispensable basic function as it generate a real-time BUS-BRANCH model in Energy Management Systems because most application softwares such as state estimation, power flow, etc., require BUS-BRANCH circuit data. This paper propose an expert system to generate BUS-BRANCH circuit model using Artificial Intelligence technology and it is applied to 154kV distribution substations.

  • PDF

Kinetics Study for Wet Air Oxidation of Sewage Sludge (하수슬러지의 습식산화반응에 대한 동력학적 연구)

  • Ahn, Jae-Hwan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.746-752
    • /
    • 2005
  • In this study, the effect of reaction parameters including reaction temperature, time, and pressure on sludge degradation and conversion to intermediates such as organic acids were investigated at low critical wet air oxidation(LC-WAO) conditions. Degradation pathways and a modified kinetic model in LC-WAO were proposed and the kinetics model predictions were compared with experimental data under various conditions. Results in the batch experiments showed that reaction temperature directly affected the thermal hydrolysis reaction rather than oxidation reaction. The efficiencies of sludge degradation and organic acid formation increased with the increase of the reaction temperature and time. The removal of SS at $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$ and $240^{\circ}C$ of reaction temperatures and 10 min of reaction time were 52.6%, 68.3%, 72.6%, and 74.4%, respectively, indicating that most organic suspended solids were liquified at early stage of reaction. At $180^{\circ}C$, $200^{\circ}C$, $220^{\circ}C$ and $240^{\circ}C$ of reaction temperatures and 40 min of reaction time, the amounts of organic acids formed from 1 g of sludge were 93.5 mg/g SS, 116.4 mg/g SS, 113.6 mg/g SS, and 123.8 mg/g SS, respectively, and the amounts of acetic acid from 1 g of sludge were 24.5 mg/g SS, 65.5 mg/g SS, 88.1 mg/g SS, and 121.5 mg/g SS, respectively. This suggested that the formation of sludge to organic acids as well as the conversion of organic acids to acetic acid increased with reaction temperature. Based on the experimental results, a modified kinetic model was suggested for the liquefaction reaction of sludge and the formation of organic acids. The kinetic model predicted an increase in kinetic parameters $k_1$ (liquefaction of organic compounds), $k_2$ (formation of organic acids to intermediate), $k_3$ (final degradation of intermediate), and $k_4$ (final degradation of organic acids) with reaction temperature. This indicated that the liquefaction of organic solid materials and the formation of organic acids increase according to reaction temperature. The calculated activation energy for reaction kinetic constants were 20.7 kJ/mol, 12.3 kJ/mol, 28.4 kJ/mol, and 54.4 kJ/mol, respectively, leading to a conclusion that not thermal hydrolysis but oxidation reaction is the rate-limiting step.

Motion Analysis of Power Tiller for Stability Improvement -Development of A Mathematical Model of Motion for Power tiller-Trailer System (동력경운기(動力耕耘機)의 안정성(安定性) 향상(向上)을 위한 주행(走行) 및 선회(旋回)에 관(關)한 연구(硏究)(II) -동력경운기(動力耕耘機)-트레일러 시스템의 운동(運動)모델의 개발(開發))

  • Park, K.J.;Ryu, K.H.;Chung, C.J.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.3
    • /
    • pp.17-29
    • /
    • 1987
  • A 10-degree of freedom mathematical model of motion for power tiller-trailer system was developed. This model can predict motion characteristics of power tiller trailer system while travelling over smooth and irregular ground surfaces under various operating conditions. The model provide, the fundamental data needed to improve the stability of power tiller-trailer systems.

  • PDF

Spontaneous Hydronephrosis in $C57BL/KsJ-Lepr^{db}/Lepr^{db}$ Mouse, an animal Model for Human NIDDM (인슐린비의존형 당뇨병 마우스 $C57BL/KsJ-Lepr^{db}/Lepr^{db}$ 의 수신증 발생 예)

  • Jeong, Su-Yeon;Yun, Young-Min;Seong, Je-Kyung
    • Korean Journal of Veterinary Pathology
    • /
    • v.3 no.2
    • /
    • pp.93-94
    • /
    • 1999
  • Spontaneous hydronephrosis was found in a 19 month-old female C57BL/KsJ-Lep $r^{db}$ / Lep $r^{db}$ mouse. We described the gross and histological appearance of spontaneous in db mouse The left kidney was dilated and filled with urine. Microscopically the renal pelvis was remarkedly dilated and the renal cortex and renal papilla were flattened.

  • PDF

VALIDATION OF TRANSITION FLOW PREDICTION AND WIND TUNNEL RESULTS FOR KU109C ROTOR AIRFOIL (로터 익형 KU109C 풍동시험 및 천이유동 해석결과의 검증)

  • Jeon, S.E.;Sa, J.H.;Park, S.H.;Kim, C.J.;Kang, H.J.;Kim, S.B.;Kim, S.H.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.54-60
    • /
    • 2012
  • Transition prediction results are validated with experimental data obtained from a transonic wind tunnel for the KU109C airfoil. A Reynolds-Averaged Navier-Stokes code is simultaneously coupled with the transition transport model of Langtry and Menter and applied to the numerical prediction of aerodynamic performance of the KU109C airfoil. Drag coefficients from the experiment are better correlated to the numerical prediction results using a transition transport model rather than the fully turbulent simulation results. Maximum lift coefficient and drag divergence at the zero-lift condition with Mach number are investigated. Through the present validation procedure, the accuracy and usefulness of both the experiment and the numerical prediction are assessed.