• Title/Summary/Keyword: (CIGS)

Search Result 338, Processing Time 0.033 seconds

CIGS 박막 태양전지 개발동향 및 발전방향

  • Yun, Jae-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.21-21
    • /
    • 2010
  • CIGS 박막 태양전지는 저가 기판의 사용, 원소재 소비가 적은 박막 증착, 연속공정 적용 등으로 인해 결정질 실리콘 태양전지에 비해 제조단가가 낮다. 변환효율의 경우 실험실 수준에서 최고 20%의 효율이 보고되고 있어 다결정 실리콘 태양전지와 견줄 만하다. 따라서 CIGS 박막 태양전지는 제조단가와 효율 면에서 매우 우수한 경쟁력을 가진 태양전지로 인식되고 있다. 일반적으로 CIGS 박막 태양전지는 Substrate/Mo전극/CIGS 광흡수층/CdS 버퍼층/ZnO 투명전극의 기본 구조를 가지고 있으며 다양한 공정과 디자인을 적용하여 제품이 생산되고 있다. 다양한 소재와 공정들 가운데에서 유리 소재를 기판으로 사용하면서 진공증발이나 스퍼터링과 같은 Physical Vapour Deposition(PVD)을 적용하여 CIGS 광흡수층을 제조하는 기술이 가장 보편적으로 적용되고 있다. 즉 상용화에 가장 근접해 있는 기술이라고 할 수 있으며 현재는 대량생산체제 구축을 위한 기술 개발이 진행되고 있다. 또한 종래의 기판소재와 광흡수층 제조 공정의 단점을 극복하기 위한 기술들도 개발되고 있다. 특히 유리 기판 소재를 금속이나 폴리머 소재를 대체하는 기술, PVD 공정이 아닌 비진공 공정을 적용하여 CIGS 광흡수층을 제조하는 기술 등은 응용성과 제조 단가 측면에서의 파급력이 크다고 할 수 있다. 본 발표에서는 저가 고효율 CIGS 박막 태양전지 개발을 위한 이슈들을 정리하고, 이를 해결하기 위한 국내외의 연구 개발 동향을 살펴보고자 한다. 또한 이를 바탕으로 하여 CIGS 박막 태양전지의 발전방향에 대해서 전망하고자 한다.

  • PDF

Fabrication of CIGS Thin Film Solar Cell by Non-Vacuum Nanoparticle Deposition Technique (비진공 나노입자 코팅법을 이용한 CIGS 박막 태양전지 제조)

  • Ahn, Se-Jin;Kim, Ki-Hyun;Yoon, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.222-224
    • /
    • 2006
  • A non-vacuum process for $Cu(In,Ga)Se_2$ (CIGS) thin film solar cells from nanoparticle precursors was described in this work CIGS nanoparticle precursors was prepared by a low temperature colloidal route by reacting the starting materials $(CuI,\;InI_3,\;GaI_3\;and\;Na_2Se)$ in organic solvents, by which fine CIGS nanoparticles of about 20nm in diameter were obtained. The nanoparticle precursors were mixed with organic binder material for the rheology of the mixture to be adjusted for the doctor blade method. After depositing the mixture of CIGS with binder on Mo/glass substrate, the samples were preheated on the hot plate in air to evaporate remaining solvents ud to burn the organic binder material. Subsequently, the resultant (porous) CIGS/Mo/glass simple was selenized in a two-zone Rapid Thermal Process (RTP) furnace in order to get a solar ceil applicable dense CIGS absorber layer. Complete solar cell structure was obtained by depositing. The other layers including CdS buffer layer, ZnO window layer and Al electrodes by conventional methods. The resultant solar cell showed a conversion efficiency of 0.5%.

  • PDF

RF 마그네트론 스퍼터링을 이용하여 온도별로 증착한 CIGS 박막의 미세구조 및 화학 조성 분석

  • Jeong, Jae-Heon;Jo, Sang-Hyeon;Song, Pung-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.278-279
    • /
    • 2012
  • 최근 들어 세계적인 고유가 행진과 화석연료 고갈에 대응하기 위하여 대체 에너지원 발굴에 대한 필요성이 높아지고 있다. 그 중 CIGS 박막 태양전지는 미래 신재생 에너지 자원의 가장 유망한 후보군 중 하나이다. 기존의 Si 기반의 태양전지의 경우 시간경과에 따른 효율 저하, 높은 재료비, 복잡한 공정으로 인하여 대량생산이 힘든 단점을 가지고 있다. 반면 박막 태양전지의 경우 생산 원가를 낮출 수 있는 태양전지 제조기술로서는 2세대 태양전지로 불리우며, 에너지 변환 효율과 생산 원가에서 우월성을 가진다. 그리고 이러한 CIGS 박막 태양전지를 단일 CIGS 타겟을 이용하여 스퍼터링 공정으로 제작하면 기존에 사용되었던 동시 증발법에 비해서 간단하고 대면적 코팅 및 대량 생산이 가능하다. 본 연구에서 사용된 기판으로는 $25{\times}25mm$ 크기의 Soda Lime Glass (SLG) 위에 DC 마그네트론 스퍼터링 공정으로 Mo가 $1{\mu}m$ 증착된 시편을 이용하여, 2 inch 단일 CIGS 타겟 (MATERION, CIGS Target 25-17.5-7.5-50 at%)을 기판 가열하여 증착하였다. RF 파워는 80 W, 기판 온도는 RT, 100, 200, 300, $400^{\circ}C$로 가열 후 증착하였고, CIGS 박막의 두께는 약 $1{\mu}m$로 일정하게 하였다. CIGS/Mo 박막의 파워별 미세구조 분석을 위해 X-ray Diffraction (XRD, BRUKER GADDS)로 측정하였으며, 박막의 결정립 크기를 확인하기 위해 Field Emission Scanning Electron Microscopy (FE-SEM, HITACHI)을 사용하여 측정하였다. 조건별 박막의 조성 분석 및 표면조도는 Energy Dispersive X-ray Spectroscopy (EDS, HORIBA 7395-H)와 Atomic Force Microscopy (AFM)을 이용하여 각각 평가하였다. 마지막으로 광학적 특성을 평가하고 박막의 밴드갭 에너지를 계산하기 위해서 190 nm에서 1,100 nm의 영역 대에서 자외선 광학 측정기(UV-Vis, HP-8453, AGLIENT)로 투과도를 측정하여 밴드갭 에너지를 계산하였다. 증착된 CIGS 박막은 기판 온도가 증가함에 따라 결정립 크기가 커지는 경향을 보였다. 이는 기판 상에 도달한 스퍼터 원자의 확산 에너지 증가로 인한 것으로 생각되어진다. 또한, 기판온도에 따른 결정립 성장 변화는 4성분계의 박막의 조성 및 핵생성 밀도와 관련되어 설명되어질 것이다.

  • PDF

Influence of Na incorporation on the Morphology of CIGS absorber layers (Na 첨가량에 따른 CIGS 광흡수층의 결정성 변화에 관한 연구)

  • Kim, Daesung;Kim, Chaewoong;Kim, Daekyong;Lee, Duckhoon;Kim, Taesung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.52-52
    • /
    • 2010
  • CIS(CuInSe2)계 화합물 태양전지는 높은 광흡수계수와 열적 안정성으로 고효율 태양전지 제조가 가능하여 태양전지용 광흡수층으로 매우 이상적이다. 미국 NREL에서는 이러한 CIGS 태양전지를 Co-evaporation 방법으로 제조 20%이상의 에너지 변환 효율을 달성하였다고 보고하였다. CIGS 태양전지의 경우 기존의 유리 기판 대신 유연한 철강 기판을 사용해 태양전지를 flexible하게 제조 할 수 있다는 장점이 있다. 이러한 flexible 태양전지의 경우 기존의 rigid 태양전지의 적용분야 뿐만 아니라 BIPV, 선박, 장난감, 군용, 자동차등 더욱더 많은 분야에 활용이 가능하다. 하지만 flexible 태양전지에 사용되는 철강기판의 경우 기존의 유리 기판인 SLG에 함유되어 있는 Na이 첨가되어 있지 않아 별도의 Na 첨가가 필요하다. Na은 CIGS 광흡수층의 결정을 증가 시키며 태양전지의 전기적 특성을 향상시킨다. 이러한 Na이 없는 경우 효율이 감소한다. 따라서 flexible 태양전지 개발을 위해서는 Na 첨가에 대한 연구가 필수적이다. 본 연구에서는 Na의 증착 순서를 변화시켜서 CIGS 증착 전, 동시증착, CIGS 증착 후로 나누어 CIGS 광흡수층 결정성의 변화를 알아보고자 한다. Na의 두께를 5nm에서 500nm 까지 단계 별로 나누어 실험을 실시하였다. 이때 CIGS 광흡수층은 미국의 NREL과 같은 3 stage 방식을 이용하였다. 1st stage의 시간은 15분으로 고정하였으며 기판온도는 약 $300^{\circ}C$로 고정 하였다. 2nd stage는 실시간 온도 감지 장치를 이용하여 Cu와 In+Ga의 조성비가 1:1이 되는 시간을 기준으로 Cu의 조성을 30%더 높게 조절하였으며 기판 온도는 약 $640^{\circ}C$로 고정 후 실험을 실시하였다. 3rd stage의 경우 Cu poor 조성으로 조절하기 위해 모든 조건을 10분으로 고정 후 실험을 실시하였다. 기판은 Na의 영향만을 비교하기위하여 Na이 첨가되어있지 않은 corning glass를 사용하였다. 후면 전극으로 약 $1{\mu}m$ 두께의 Mo을 DC Sputtering 방법을 이용하여 증착 하였다. 각각의 Na 두께에 따른 CIGS 광흡수층의 특성을 분석하기 위해 FE-SEM, XRD 분석을 실시하였다.

  • PDF

Structural and Optical Properties of Copper Indium Gallium Selenide Thin Films Prepared by RF Magnetron Sputtering

  • Kong, Seon-Mi;Fan, Rong;Kim, Dong-Chan;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.158-158
    • /
    • 2011
  • $Cu(In_xGa_{1-x})Se_2$ (CIGS) thin film solar cell is one of the most promising solar cells in photovoltaic devices. CIGS has a direct band gap which varied from 1.0 to 1.26 eV, depending on the Ga to In ratio. Also, CIGS has been studying for an absorber in thin film solar cells due to their highest absorption coefficient which is $1{\times}10^5cm^{-1}$ and good stability for deposition process at high temperature of $450{\sim}590^{\circ}C$. Currently, the highest efficiency of CIGS thin film solar cell is approximately 20.3%, which is closely approaching to the efficiency of poly-silicon solar cell. The deposition technique is one of the most important points in preparing CIGS thin film solar cells. Among the various deposition techniques, the sputtering is known to be very effective and feasible process for mass production. In this study, CIGS thin films have been prepared by rf magnetron sputtering method using a single target. The optical and structural properties of CIGS films are generally dependent on deposition parameters. Therefore, we will explore the influence of deposition power on the properties of CIGS films and the films will be deposited by rf magnetron sputtering using CIGS single target on Mo coated soda lime glass at $500^{\circ}C$. The thickness of CIGS films will be measured by Tencor-P1 profiler. The optical properties will be measured by UV-visible spectroscopy. The crystal structure will be analyzed using X-ray diffraction (XRD). Finally the optimal deposition conditions for CIGS thin films will be developed.

  • PDF

Co-evaporator를 이용하여 제작한 CIGS Precursor Stack 구조 및 RTP 조건에 따른 Selenization 효과에 관한 연구

  • Kim, Chan;Kim, Dae-Hwan;Seong, Si-Jun;Gang, Jin-Gyu;Lee, Il-Su;Do, Jin-Yeong;Park, Wan-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.404-405
    • /
    • 2011
  • Cu(InGa)$Se_2$ (CIGS) 박막 태양전지의 저가 및 대면적화를 위한 양산화 공정인 two-step process (sputter/selenization) 공정에서는 sputtering으로 형성한 metal precursor stack을 $H_2$ Se gas를 이용하여 selenization하는 공정을 주로 이용한다. 하지만 이러한 selenization 공정은 유독한 $H_2$ Se gas를 이용해야 한다는 점과 긴 시간 동안 열처리를 해야 하는 단점을 가지고 있다. 이에 metal precursor stack 위에 Se 막을 우선 증착하고, Rapid Thermal Process (RTP)를 이용하여 selenization하는 방법이 현재 많은 관심을 끌고 있다. 본 논문에서는 sputtering 이후 RTP를 이용한 CIGS 흡수층 제작에 대한 선행연구의 일환으로 co-evaporator 장비를 이용하여 다양한 구조의 precursor를 제작하고 RTP 조건에 따른 selenization 효과를 연구하였다. Co-evaporator를 이용하여 CIGS, CIG/Se, CuGa/In/Se, In/CuGa/Se 4가지 구조의 precursor stack을 Mo coated soda lime glass 위에 제작하였다. 이때 amorphous 상태의 precursor stack을 만들기 위하여 기판에 열은 가하여 주지 않았으며, 각각의 stack 구조에서 가지고 있는 Cu, In, Ga, Se의 총량을 동일하게 유지하기 위하여 각 stack의 증착 시간을 동일하게 유지하였다. Selenization을 위한 RTP 조건은 550, $600^{\circ}C$ 각각에 대하여 1, 5, 10분으로 split을 진행하였다. Precursor stack의 증착 후 관찰한 XRD 결과는 비정질 상태를 잘 나타내었으며, SEM 결과 CIGS precursor stack을 제외한 나머지 구조의 stack에서는 In 박막의 surface roughness로 인하여 박막의 평탄화가 좋지 않음을 확인하였다. CIGS precursor stack의 경우, RTP 온도와 시간 split와 상관없이 결정화가 잘 이루어졌으나 grain의 성장이 부족하였다. 이에 비하여 CIG/Se, CuGa/In/Se, In/CuGa/Se 구조의 precursor stack의 경우, $550^{\circ}C$ 열처리에서는 InSe의 결정상이 관찰 되었으며 $600^{\circ}C$, 5분 이상 열처리에서 CIGS 결정상이 관찰되었다. 이러한 결과는 Se이 metal 원소들과 함께 있는 CIGS 구조에 비하여 metal precursor stack 위에 Se을 증착한 stack 구조들의 경우는 CIGS 결정을 형성하기 위해 Se이 metal 층들로 확산되어 반응을 하여야 하므로 상대적으로 많은 열에너지가 필요한 것으로 이해할 수 있으며, RTP를 이용한 selenization 공정으로 CIGS 박막 태양전지의 흡수층 형성이 가능함을 확인하였다.

  • PDF

암모니아의 농도에 따른 CBD-ZnS/CIGS 박막태양전지의 제작 및 분석

  • Jeong, Yong-Deok;Choe, Hae-Won;Jo, Dae-Hyeong;Park, Rae-Man;Lee, Gyu-Seok;Kim, Je-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.298-299
    • /
    • 2010
  • Cu(In, Ga)Se2 (CIGS) 박막 태양전지는 Soda lime glass/Mo/CIGS/CdS/ZnO/ITO/Al 의 구조를 가지고 있다. CIGS 화합물은 direct bandgap 구조를 하고 있으며, 광흡수율이 다른 어떤 물질들 보다 뛰어나 박막으로도 충분히 태양광을 흡수할 수 있다. 또한 Ga의 도핑 농도에 따른 밴드갭 조절도 가능하다. 이러한 성질들로 인해 현재 박막태양전지로서 20.1%의 최고효율을 가지고 있다.[1] CIGS 박막 태양전지에서 p-CIGS layer와 스퍼터링으로 증착되는 n-ZnO layer사이의 buffer 층으로 chemical bath deposition (CBD)-CdS 박막을 주로 사용한다. CBD-CdS 박막은 n-ZnO 스퍼터로 증착 시킬 때, CIGS 층의 손상을 최소화하고, 이 두 층 사이에서의 격자상수와 밴드갭의 차이를 줄여주어 CIGS 박막태양전지의 효율을 증가 시키는 역할을 한다. 하지만, Cd (카드뮴)의 심각한 독성과 낮은 밴드갭(2.4eV)으로 인해 CIGS 층에서의 광흡수율을 줄여, CdS를 대체할 새로운 buffer 층의 필요성이 대두되었다.[2] 그 대안으로 ZnS, Zn(O, S, OH), (Zn, Mg)O, In2S3 같은 물질이 연구되고 있다. 현재 CBD-ZnS를 buffer 층으로 사용한 CIGS 박막태양전지의 효율은 최고 18.6%로 CBD-CdS의 최고효율보다는 약 1.5% 낮지만, ZnS가 높은 밴드갭(3.7~3.8eV)과 Cd-free 물질이라는 점에서 CdS를 대체할 물질로 각광받고 있다. 본 연구에서는 기존의 CdS 박막을 제조하는 방법과 같은 방법인 CBD를 이용하여 ZnS 박막을 제조하였다. ZnS 박막을 제조하기 위해서는 Zinc sulfate, Thiourea, 암모니아가 사용된다. 암모니아의 mol 농도에 따른 CBD-ZnS/CIGS 박막태양전지의 효율 변화를 관찰하기 위해 암모니아의 mol 농도는 1 mol, 2 mol, 3 mol, 4 mol, 5 mol, 6 mol, 그 이상의 과량을 사용하여 실험하였다. 실험 결과, 암모니아농도 5 mol에서 효율 13.82%를 확인할 수 있었다. 최고효율을 보인 조건인 암모니아 농도가 5 mol 일 때, Voc는 0.602V, Jsc는 33.109mA/cm2, FF는 69.4%를 나타내었다.

  • PDF

Preparation of a Dense Cu(In,Ga)Se2 Film From (In,Se)/(Cu,Ga) Stacked Precursor for CIGS Solar Cells

  • Mun, Seon Hong;Chalapathy, R.B.V.;Ahn, Jin Hyung;Park, Jung Woo;Kim, Ki Hwan;Yun, Jae Ho;Ahn, Byung Tae
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • The $Cu(In,Ga)Se_2$ (CIGS) thin film obtained by two-step process (metal deposition and Se annealing) has a rough surface morphology and many voids at the CIGS/Mo interface. To solve the problem a precursor that contains Se was employer by depositing a (In,Se)/(Cu,Ga) stacked layer. We devised a two-step annealing (vacuum pre-annealing and Se annealing) for the precursor because direct annealing of the precursor in Se environment resulted in the small grains with unwanted demarcation between stacked layers. After vacuum pre-annealing up to $500^{\circ}C$ the CIGS film consisted of CIGS phase and secondary phases including $In_4Se_3$, InSe, and $Cu_9(In,Ga)_4$. The secondary phases were completely converted to CIGS phase by a subsequent Se annealing. A void-free CIGS/Mo interface was obtained by the two-step annealing process. Especially, the CIGS film prepared by vacuum annealing $450^{\circ}C$ and subsequent Se annealing $550^{\circ}C$ showed a densely-packed grains with smooth surface, well-aligned bamboo grains on the top of the film, little voids in the film, and also little voids at the CIGS/Mo interface. The smooth surface enhanced the cell performance due to the increase of shunt resistance.

Properties of the surface of the CIGS thin films after sulfurization (황화 열처리를 통한 CIGS 광흡수층의 표면 특성 변화 연구)

  • Kim, Ji Hye;Ko, Young Min;Larina, Liudmila;Ahn, Byung Tae
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.99.1-99.1
    • /
    • 2010
  • Many efforts on the surface sulfurization of $Cu(InGa)Se_2$ (CIGS)thin films have been reported as techniques to improve CIGS solar cell performance. We have investigated the sulfurization technique using the sulfur vapor. The co-evaporated $Cu(In,Ga)Se_2$ tin film was used for sulfurization. A thin $Cu(In,Ga)(S,Se)_2$ layer was grown on the surface of the CIGS thin film after high-temperature annealing in sulfur vapor. The structural and compositional properties of the thin films were studied by XRD, EDS and AES analysis. The obtained results revealed that the surface modification technique is promising method to S incorporated into CIGS absorber.

  • PDF

Non-vacuum processing of CIGS absorber layer using nanoparticle

  • Ham, Chang-Woo;Song, Ki-Bong;Suh, Jeong-Dae;Cho, Jung-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.267-267
    • /
    • 2009
  • Solar cells with CIGS absorber layers have proven their suitability for high efficiency and stable low cost solar cells. We prepared and characterized particle based CIGS thin film using a non-vacuum processing. CIGS powder were obtained at $240^{\circ}C$ for 6 hours from the reaction of $CuCl_2$, $InCl_3$, $GaCl_3$, Se powder in solvent. The nanoparticle precursors were mixed with binder material. The CIGS thin film deposited on a sodalime glass. The CIGS thin film were identified to have a typical chalcopyrite tetragonal structure by using UV/Visible-spectroscopy, X-ray diffraction(XRD), Auger Electron Spectroscopy(AES), Scanning Electron Microscopy(SEM).

  • PDF