• Title/Summary/Keyword: (Ba, Sr)TiO$_3$

Search Result 494, Processing Time 0.028 seconds

Characteristics of (Ba,Sr)RuO$_3$Bottom Electrodes by Liquid Delivery Metalorganic Chemical Vapor Deposition (액체 운반 유기 금속 화학 기상 증착법에 의한 $(Ba,Sr)RuO_3$ 하부전극의 특성)

  • Choe, Eun-Seok;Yun, Sun-Gil
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.997-1000
    • /
    • 2001
  • Conducting perovskite oxide, $(Ba,Sr)RuO_3(BSR)$, which has many advantages for $(Ba,Sr)TiO_3(BST)$ due to their similarity in crystal structure, lattice constant and chemical composition, was prepared on n-type Si (100) by liquid delivery metalorganic chemical vapor deposition(LDMOCVD). The deposition characteristics of BSR were controlled by gas-phase mass-transfer in the experiment. The BSR films deposited at 50$0^{\circ}C$ and oxygen flow rate of 100 sccm(standard cc/min) showed an average roughness of 22 $\AA$and resistivity of 810 $\mu$$\Omega$-cm. The roughness of BSR films with oxygen flow rate showed a close relationship with the resistivity of films. BSR (110) peak shifted toward lower Bragg angle with increase of x in the$(Ba_x,Sr_{1-x})TiO_3$. The resistivity of BSR films increased from 810 to 924 $\mu$$\Omega$-cm with increase of Ba content(x).

  • PDF

Dielectric Properties of (Ba,Sr)$TiO_3$ Thin Films with Substrate Temperature (기판온도에 따른 (Ba,Sr)$TiO_3$ 박막의 유전특성)

  • Lee, Sang-Chul;Chung, Jang-Ho;Bae, Seon-Gi;Lee, Young-Hie
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1879-1881
    • /
    • 1999
  • (Ba,Sr)$TiO_3$[BST] thin films were fabricated on Pt/Ti/$SiO_2$/Si substrate by RF sputtering. We investigated the effects of substrate temperature on the structural and dielectric properties of BST thin films. Increasing the substrate temperature, barium multi titanate phases were decreased, and BST (100), (200) peaks were increased. The relative dielectric constant and dielectric loss of the BST thin films at the substrate temperature of $500^{\circ}C$ were 300 and 0.018, respectively at l[kHz]. In all films, the dielectric constants decreased. Dielectric losses increased as increasing the frequency. The switching voltage was 5V of the BST thin films at the substrate temperature of $500^{\circ}C$.

  • PDF

Electrical Properties of ${Ba_{0.5}}{Sr_{0.5}}{TiO_3}$Thin Film with Various Heat Treatment Conditions (다양한 열처리 조건에 따른 ${Ba_{0.5}}{Sr_{0.5}}{TiO_3}$박막의 전기적 특성)

  • 손영국
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.5
    • /
    • pp.492-498
    • /
    • 2001
  • Ba$_{0.5}$Sr$_{0.5}$TiO$_3$타겟을 이용 Pt/Ti/SiO/Si 기판 위에 R.F magnetron sputtering 방법으로 BST 박막을 증착하여 다양한 열처리 조건에 따른 BST 박막의 전기적 성질(정전용량, 누설전류)에 대해 박막의 결정성과 미세구조의 연관성에 대하여 연구하였다. BST 박막의 유전상수는 grain size에 영향 받으며, 열처리 온도가 증가할수록 유전상수는 증가함을 보였고 온도에 따른 누설전류는 저전압 영역에서는 Hopping conduction, 고전압 영역에서는 Schottky conduction mechanism을 따르는 것으로 나타났다.

  • PDF

Fabrication of BST Thin films with Bi Addition by Sol-gel Method and their Structural and Dielectric Properties (Sol-gel 법으로 제작된 BST 박막의 Bi 첨가에 따른 구조적, 유전적 특성)

  • 김경태;김창일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.8
    • /
    • pp.852-858
    • /
    • 2004
  • An alkoxide-based sol-gel method was used to fabricate $Ba_{0.6}Sr_{0.4}TiO_{3}$thin films doped by Bi from 5 to 20 mol% on a Pt/Ti/$SiO_2$/Sisubstrate. The structural and dielectric properties of BST thin films were investigated as a function of Bi dopant concentration. The dielectric properties of the Bi doped BST films were strongly dependent on the Bi contents. The dielectric constant and dielectric loss of the films decreased with increasing Bi content. However, the leakage current density of the 10 mol% Bi doped $Ba_{0.6}Sr_{0.4}TiO_{3}$ thin film showed the lowest value of 5.13$\times 10^{-7} A/{cm}^2$ at 5 V. The figure of merit (FOM) reached a maximum value of 32.42 at a 10 mol% Bi doped $Ba_{0.6}Sr_{0.4}TiO_{3}$thin films. The dielectric constant, loss factor, and tunability of the 10 mol% Bi doped $Ba_{0.6}Sr_{0.4}Tio_{3}$ thin films were 333, 0.0095, and 31.1%, respectively.