• Title/Summary/Keyword: (20s)-protopanaxadiol

Search Result 68, Processing Time 0.021 seconds

Metabolism of Ginseng Saponins and Its Significance

  • Yamasakia Kazuo;Kasai Ryoji;Matsuura Hiromichi;Tanaka Osamu
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.253-261
    • /
    • 2002
  • To follow the metabolic fate of aglycone of ginseng saponins,in vitro and in vivo experiments were performed. Incubation of 20(S)-prtopanaxatriol (1) with rat liver S9 fraction afforded unique ocotillol derivatives, 20, 24-epoxysides (3 and 4). Also 20(S)-prtopanaxadiol (2) gave the corresponding epoxides (5). Healthy volunteers were taken with Sanchi Ginseng, which contains protopanaxatriol and protopanaxadiol saponins and no ocotillol saponins. From the alkaline hydrolysate of the urine samples of these volunteers,3 was detected as well as 1, and the ratio of 3/1 increased up to 2.0 at the maximum at 50 hrs. Biochemical significance of the ocotillol derivatives is discussed, since the main bioactive saponin in Panax vietnamensis is an ocotillol-type saponin, majonoside R2 (7).

  • PDF

항암성 Ginsenoside류의 합성

  • 임광식
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.226-226
    • /
    • 1994
  • 천연의 Triterpene이나 Steroid의 01igo당 배당체는 항균작용, 소염작용, 항암작용등의 유용한 생리활성을 가지는것이 많다. 따라서 이들 화합물군으로 부터 신의약품이 개발될 가능성이 매우크다 하겠다. 그러나 천연물은 그 작용이 약하거나 순수하게 다량 분리하기가 쉽지않다. 생리활성이 강하고, 부작용이 적은 배당체를 이용가능한 양만큼 다량을 순수하게 얻기 위하여는 합성의 기법이 절대적으로 필요하다. 이를 위하여 연구자는 천연의 총배당체 (배당체혼합물)로부터 aglycone을 얻고 여기에 g1ycosidation 반응으로 당을 결합시킴으로써 천연 또는 비 천연성 배당체를 합성하고 생리활성을 검토, 신물질을 창출하고자 한다. Aglycone으로는 Ginsenosides의 aglycone인 20(s)-protopanaxadiol 및 20(S)-protopanaxatriol, Soyasapogenol B, Oleanlic acid를 사용하고, 목표로하는 생리활성은 항암작용, 항군작용, alcohol 흡수 저해작용을 지향한다.

  • PDF

Korean Red Ginseng Saponin Fraction Downregulates Proinflammatory Mediators in LPS Stimulated RAW264.7 Cells and Protects Mice against Endotoxic Shock

  • Yayeh, Taddessee;Jung, Kun-Ho;Jeong, Hye-Yoon;Park, Ji-Hoon;Song, Yong-Bum;Kwak, Yi-Seong;Kang, Heun-Soo;Cho, Jae-Youl;Oh, Jae-Wook;Kim, Sang-Keun;Rhee, Man-Hee
    • Journal of Ginseng Research
    • /
    • v.36 no.3
    • /
    • pp.263-269
    • /
    • 2012
  • Korean red ginseng has shown therapeutic effects for a number of disease conditions. However, little is known about the anti-inflammatory effect of Korean red ginseng saponin fraction (RGSF) in vitro and in vivo. Therefore, in this study, we showed that RGSF containing 20(S)-protopanaxadiol type saponins inhibited nitric oxide production and attenuated the release of tumor necrotic factor (TNF)-${\alpha}$, interleukin (IL)-6, granulocyte monocyte colony stimulating factor (GMCSF), and macrophage chemo-attractant protein-1 in lipopolysaccharide (LPS) stimulated murine macrophage RAW264.7 cells. Moreover, RGSF down-regulated the mRNA expressions of inducible nitric oxide synthase, cyclooxyginase-2, IL-$1{\beta}$, TNF-${\alpha}$, GMCSF, and IL-6. Furthermore, RGSF reduced the level of TNF-${\alpha}$ in the serum and protected mice against LPS mediated endotoxic shock. In conclusion, these results indicated that ginsenosides from RGSF and their metabolites could be potential sources of therapeutic agents against inflammation.

Complete $^1H$-NMR and $^{13}C$-NMR spectral analysis of the pairs of 20(S) and 20(R) ginsenosides

  • Yang, Heejung;Kim, Jeom Yong;Kim, Sun Ok;Yoo, Young Hyo;Sung, Sang Hyun
    • Journal of Ginseng Research
    • /
    • v.38 no.3
    • /
    • pp.194-202
    • /
    • 2014
  • Background: Ginsenosides, the major ingredients of Panax ginseng, have been studied for many decades in Asian countries as a result of their wide range of pharmacological properties. The less polar ginsenosides, with one or two sugar residues, are not present in nature and are produced during manufacturing processes by methods such as heating, steaming, acid hydrolysis, and enzyme reactions. $^1H$-NMR and $^{13}C$-NMR spectroscopic data for the identification of the less polar ginsenosides are often unavailable or incomplete. Methods: We isolated 21 compounds, including 10 pairs of 20(S) and 20(R) less polar ginsenosides (1-20), and an oleanane-type triterpene (21) from a processed ginseng preparation and obtained complete $^1H$-NMR and $^{13}C$-NMR spectroscopic data for the following compounds, referred to as compounds 1-21 for rapid identification: 20(S)-ginsenosides Rh2 (1), 20(R)-Rh2 (2), 20(S)-Rg3 (3), 20(R)-Rg3 (4), 6'-O-acetyl-20(S)-Rh2 [20(S)-AcetylRh2] (5), 20(R)-AcetylRh2 (6), 25-hydroxy-20(S)-Rh2 (7), 25-hydroxy-20(S)-Rh2 (8), 20(S)-Rh1 (9), 20(R)-Rh1 (10), 20(S)-Rg2 (11), 20(R)-Rg2 (12), 25-hydroxy-20(S)-Rh1 (13), 25-hydroxy-20(R)-Rh1 (14), 20(S)-AcetylRg2 (15), 20(R)-AcetylRg2 (16), Rh4 (17), Rg5 (18), Rk1 (19), 25-hydroxy-Rh4 (20), and oleanolic acid 28-O-b-D-glucopyranoside (21).

Action of Dammarane-Type Triterpenoidal Glycosides and Their Aglycones on Lipid Membranes (지질막에 대한 Dammarane-Type Triterpenoidal Glycosides와 그 Aglycones의 작용)

  • Kim, Yu.A.;Park, Kyeong-Mee;Hyun, Hack-Chul;Song, Yong-Bum;Shin, Han-Jae;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.20 no.3
    • /
    • pp.269-273
    • /
    • 1996
  • We investigated the effects of ginseng glycosides and their aglycones on processes of single ion channel formation and channel properties. The glycosides, Rg, and Rb, , and their aglycones, 20-(S)-protopanaxatriol (PT) and 20-(S)-protopanaxadiol (PD) increased the membrane permeability for ions. PT, PD, Rg1, and Rb1; at concentrations of 0.5, 3.0, 10.0 and 30.0 $\mu\textrm{g}$/ml respectively; Induced single ion channel fluctuations with the life times in the range of 0.1~1005 in open states and conductances from 5 to 30 pS in 1 M KCI. At high concentrations of these substances, rapid fluctuations of transmembrane ion current with amplitude from hundred pS to dozen nS were observed. Against other substances, ginsenoside Rbl began to increase the membrane conductance at concentration of about 60 $\mu\textrm{g}$/ml without fluctuation of single ion channel. Membranes treated with PT, PD, Rg1 and Rb1 are more permeable to K+, than to Cl while zero current membrane potentials with 10 gradients of KCI were 12, 16, 8, 25 mV respectively. Key words : Membrane conductance, single ion channel, ginsenosides.

  • PDF

Evaluation of the gastroprotective effects of 20 (S)-ginsenoside Rg3 on gastric ulcer models in mice

  • Zhang, Kai;Liu, Ying;Wang, Cuizhu;Li, Jiannan;Xiong, Lingxin;Wang, Zhenzhou;Liu, Jinping;Li, Pingya
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.550-561
    • /
    • 2019
  • Background: Gastric ulcer (GU) is a common gastrointestinal disease that can be induced by many factors. Finding an effective treatment method that contains fewer side effects is important. 20 (S)-ginsenoside Rg3 is a kind of protopanaxadiol and has shown superior antiinflammatory and antioxidant effects in many studies, especially cancer studies. In this study, we examined the treatment efficacy of 20 (S)-ginsenoside Rg3 on GU. Methods: Three kinds of GU models, including an alcohol GU model, a pylorus-ligated GU model, and an acetic acid GU model, were used. Mouse endothelin-1 (ET-1) and nitric oxide (NO) levels in blood and epidermal growth factor (EGF), superoxide dismutase, and NO levels in gastric mucosa were evaluated. Hematoxylin and eosin staining of gastric mucosa and immunohistochemical staining of ET-1, inducible nitric oxide synthase (NOS2), and epidermal growth factor receptors were studied. Ulcer index (UI) scores and UI ratios were also analyzed to demonstrate the GU conditions in different groups. Furthermore, Glide XP from $Schr{\ddot{o}}dinger$ was used for molecular docking to clarify the interactions between 20 (S)-ginsenoside Rg3 and EGF and NOS2. Results: 20 (S)-ginsenoside Rg3 significantly decreased the UI scores and UI ratios in all the three GU models, and it demonstrated antiulcer effects by decreasing the ET-1 and NOS2 levels and increasing the NO, superoxide dismutase, EGF, and epidermal growth factor receptor levels. In addition, high-dose 20 (S)-ginsenoside Rg3 showed satisfactory gastric mucosa protection effects. Conclusion: 20 (S)-ginsenoside Rg3 can inhibit the formation of GU and may be a potential therapeutic agent for GU.

20S-dihydroprotopanaxadiol, a ginsenoside derivative, boosts innate immune responses of monocytes and macrophages

  • Kim, Mi-Yeon;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.293-299
    • /
    • 2013
  • 20S-dihydroprotopanaxadiol (2H-PPD) is a derivative of protopanaxadiol, a glycone of ginsenosides prepared from Panax ginseng. Although ginsenosides and acidic polysaccharides are known to be major active ingredients in ginseng, the immunopharmacological activities of their metabolites and derivatives have not been fully explored. In this study, we aimed to elucidate the regulatory action of 2H-PPD on the function of monocytes and macrophages in innate immune responses. 2H-PPD was able to boost the phagocytic uptake of fluorescein isothiocyanate-dextran in macrophages and enhance the generation of radicals (reactive oxygen species) in sodium nitroprusside-treated RAW264.7 cells. The surface levels of the costimulatory molecules such as CD80 and CD86 were also increased during 2H-PPD treatment. In addition, this compound boosted U937 cell-cell aggregation induced by CD29 and CD43 antibodies, but not by cell-extracellular matrix (fibronectin) adhesion. Similarly, the surface levels of CD29 and CD43 were increased by 2H-PPD exposure. Therefore, our results strongly suggest that 2H-PPD has the pharmacological capability to upregulate the functional role of macrophages/monocytes in innate immunity.

Compound K, Ginseng Saponin Metabolite, Induces Apoptosis in Human Monocytic Leukemia cells

  • Kang, Kyong-Ah;Kim, Dong-Hyun;Hyun, Jin-Won
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.75-75
    • /
    • 2003
  • We report upon the cytotoxic activity of the ginseng saponin metabolite, Compound K (20-O-D-glucopyranosyl-20(S)-protopanaxadiol, IH90l) on various human leukemia cell lines. Compound K had most effect on U937, a human monocytic leukemia cell line, which on treatment showed; a exposure of phosphatidylserine from the inner cell membrane to the outer cell membrane, the formation of apoptotic bodies and DNA fragmentation, - characteristics of apoptosis. Compound K induced apoptosis by up-regulating Bax, disrupting the mitochondria membrane potential, and by activating caspase 9 and caspase 3. Therefore, we suggest that Compound K inhibit U937 cell growth by inducing apoptosis through the up-regulation of Bax and caspase activation.

  • PDF

Ginsenoside $Rs_3$, A genuine Dammarane-Glycoside from Korean Red Ginseng

  • Baek, Nam-In;Kim, Jong-Moon;Park, Jeong-Hill;Ryu, Jae-Ha;Kim, Dong-Seon;Lee, You-Hui;Park, Jong-Dae;Kim, Shin-Il
    • Archives of Pharmacal Research
    • /
    • v.20 no.3
    • /
    • pp.280-282
    • /
    • 1997
  • A genuine dammarane-glycoside, named as ginsenoside $ Rs_3$, was isolated from the MeOH extracts of Korean red ginseng (Panax ginseng C.A. Meyer) through repeated silica gel column chromatographies and its chemical structure was determined as (20S)-protopanaxadiol $3-O-[6^{11}-O-acetyl-{\beta}-D-glucopyranosyl (1{\rightarrow2)-{\beta}-D-$glucopyranoside on the basis of several spectral and physical evidences including HMBC and FAB-MS.

  • PDF

A Ginseng Saponin Metabolite-Induced Apoptosis in HepG2 Cells Involves a Mitochondria-Mediated Pathway and its Downstream Caspase-8 Activation and Bid Cleavage

  • Oh, Seon-Hee;Lee, Bang-Wool;Yin, Hu-Quan;Kim, Hyun-Mi;Lee, Byung-Hoon
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.146-146
    • /
    • 2003
  • 20-O-(${\beta}$-D-Glucopyranosyl)-20(S)-protopanaxadiol (IH901), an intestinal bacterial metabolite of ginseng saponins formed from ginsenosides Rb1, Rb2 and Rc, is suggested to be a potential chemopreventive agent. Here we show that IH901 induces apoptosis in human hepatoblastoma HepG2 cells.(omitted)

  • PDF