• Title/Summary/Keyword: (진공)

Search Result 14,890, Processing Time 0.062 seconds

Characterization of quality changes of whole super sweet corn (Zea mays saccharata Sturt.) during thermal sterilization for shelf-stable products (상온유통을 위한 가열살균 중의 통 초당옥수수의 품질변화 연구)

  • Lee, Yun Ju;Yoon, Won Byong
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.1
    • /
    • pp.25-30
    • /
    • 2019
  • This study investigated the quality changes in whole super sweet corn during thermal processing to extend its shelf-life. To minimize the reduction of unique texture of whole sweet corn after the sterilization, the alcohol sanitation applied and the cold point of a whole corn ear was determined using a computer simulation. The cold point was located between the corn kernel and the cob. The microorganisms on the surface of sweet corn were reduced by more than 1 log CFU/g after alcohol sanitation, then the whole corn was treated to satisfy the degree of sterilization ($F_{121.1}=4$). The quality of sterilized sweet corn was compared with the control that was treated with steaming. The quality changes of sterilized sweet corn during storage were monitored for 9 months at $25^{\circ}C$. The hardness was maintained within 30% of its initial value. The minimum of hardness was $464.50{\pm}103.35g$ and maximum of hardness was $514.50{\pm}81.83g$. The differences in the sugar content among the samples were found, but the sugar content of corn kernel remained within 30% of the control, ranging from $28.83{\pm}1.05$ to $34.36{\pm}0.42%$. The yellowness was higher than that of control by 5%. The maximum value of yellowness was $34.36{\pm}0.42$. The general bacteria and molds and yeasts in corn kernel stored at $25^{\circ}C$ were not detected after 9 months of storage at $25^{\circ}C$. Therefore, in this study, we have demonstrated that the thermal sterilized method extends the shelf-life of whole sweet corn with minimizing its quality changes over 6 months in room temperature.

Consideration of a Bacteria Contamination Management in the Dispensation of 99mTc Radiopharmaceutical (테크네슘 방사성의약품의 조제와 분배 과정에서 오염균에 대한 고찰)

  • Choi, Do Chul;Gim, Yeong Su;Jo, Gwang Mo;Gim, Hui Jeong;Seo, Han Gyeong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.22 no.2
    • /
    • pp.84-87
    • /
    • 2018
  • Purpose The radiopharmaceutical used in the nuclear medicine department is used only for the specific patient according to the prescription or instruction of the doctor without selling, so it is dispensed and it is distributed and used for the examination. Radiopharmaceuticals administered to patients should be managed appropriately as well as radiation safety management during dispensation. The purpose of this study is to investigate microbial contamination during dispensation of radiopharmaceuticals Materials and Methods This study distinguished between general workbench and clean workbench and performed three tests. First, microbial cultivation test of radiopharmaceutical prepared and dispensed in general workbenches and sterile workbenches were carried out five times, respectively. The second test was performed settle plate method three times before and after the use of the exhaust filter. Finally, Adenosine Triphosphate (ATP) measurement was performed in each workbench to measure bacterial counts. In addition, ATP measurement were carried out by designating locations and items that may be contaminated during dispensation. Results In the microbial culture test, no microorganisms were detected in both samples. In the settle plate method, it was detected without using of the exhaust filter in a general workbench once. In the ATP measurement test, it was measured at the level of 400 RLU or less, which is the standard value of contamination, in both workbenches surface. In additional ATP measurement test, the refrigerator handle in the distribution room was measured above the reference value of 1217 RLU, the vacuum vial shield of the Tech Generator at 435 RLU, and the syringe holder at 1357 RLU. After environmental disinfection, the results were reduced to 311 RLU, 136 RLU, and 291 RLU. Conclusion No contamination by bacteria was found in both workbenches. However, microbial contamination may occur if the use of an exhaust filter or proper hand hygiene is not achieved. Regular inspections and management for aseptic processing themselves will be necessary.

Nanoscale Pattern Formation of Li2CO3 for Lithium-Ion Battery Anode Material by Pattern Transfer Printing (패턴전사 프린팅을 활용한 리튬이온 배터리 양극 기초소재 Li2CO3의 나노스케일 패턴화 방법)

  • Kang, Young Lim;Park, Tae Wan;Park, Eun-Soo;Lee, Junghoon;Wang, Jei-Pil;Park, Woon Ik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.83-89
    • /
    • 2020
  • For the past few decades, as part of efforts to protect the environment where fossil fuels, which have been a key energy resource for mankind, are becoming increasingly depleted and pollution due to industrial development, ecofriendly secondary batteries, hydrogen generating energy devices, energy storage systems, and many other new energy technologies are being developed. Among them, the lithium-ion battery (LIB) is considered to be a next-generation energy device suitable for application as a large-capacity battery and capable of industrial application due to its high energy density and long lifespan. However, considering the growing battery market such as eco-friendly electric vehicles and drones, it is expected that a large amount of battery waste will spill out from some point due to the end of life. In order to prepare for this situation, development of a process for recovering lithium and various valuable metals from waste batteries is required, and at the same time, a plan to recycle them is socially required. In this study, we introduce a nanoscale pattern transfer printing (NTP) process of Li2CO3, a representative anode material for lithium ion batteries, one of the strategic materials for recycling waste batteries. First, Li2CO3 powder was formed by pressing in a vacuum, and a 3-inch sputter target for very pure Li2CO3 thin film deposition was successfully produced through high-temperature sintering. The target was mounted on a sputtering device, and a well-ordered Li2CO3 line pattern with a width of 250 nm was successfully obtained on the Si substrate using the NTP process. In addition, based on the nTP method, the periodic Li2CO3 line patterns were formed on the surfaces of metal, glass, flexible polymer substrates, and even curved goggles. These results are expected to be applied to the thin films of various functional materials used in battery devices in the future, and is also expected to be particularly helpful in improving the performance of lithium-ion battery devices on various substrates.

Crystallographic Study on the Selectivity and Distribution of Sr2+ Ions Within Zeolite A In the Presence of Competing Na+ Ions in Aqueous Exchange Solution (Na+ 경쟁이온이 존재하는 수용액에서 Zeolite A 내 Sr2+ 이온의 선택성 및 분포에 관한 결정학적 연구)

  • kim, Hu Sik;Park, Jong Sam;Lim, Woo Taik
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • To study the properties of Sr2+ exchange into zeolite A with increasing the molar concentration of Na+ in given exchange solution, four single crystals of fully dehydrated Sr2+- and Na+- exchanged zeolite A were prepared by the bath method using mixed ion-exchange solutions. The Sr(NO3)2:NaNO3 molar rations of the ion exchange solution were 1:1(crystal 1), 1:100(crystal 2), 1:250(crystal 3), and 1:500 (crystal 4), respectively, with a total concentration of 0.05 M. The single-crystals were then vacuum dehydration at 623 K and 1×10-4 Pa for 2 days. Their single-crystal structures were determined by single-crystal synchrotron X-ray diffraction techniques in the cubic space group Pm3-m, at 100(1) K, and were then refined to the final error indices of R1/wR2=0.047/0.146, 0.048/0.142, 0.036/0.128, and 0.040/0.156 for crystals 1, 2, 3, and 4, respectively. In crystals 1 and 2, the 6 Sr2+ ions are found at three different crystallographic sites. In crystal 3, 1 Sr2+ and 10 Na+ ions are found in large cavity and sodalite unit. In crystal 4, only 12 Na+ ions occupy three equipoints. The degree of Sr2+ ion-exchange decreased sharply from 100 to 16.7 to 0% as the initial Na+ concentration increase and the Sr2+ concentration decrease. In addition, the unit cell constant of the zeolite framework decreased with this lower level of Sr2+ exchange.

Development of the Filterable Water Sampler System for eDNA Filtering and Performance Evaluation of the System through eDNA Monitoring at Catchment Conduit Intake-Reservoir (eDNA 포집용 채수 필터시스템 개발과 집수매거 취수지 내에서의 성능평가)

  • Kwak, Tae-Soo;Kim, Won-Seok;Lee, Sun Ho;Kwak, Ihn-Sil
    • Korean Journal of Ecology and Environment
    • /
    • v.54 no.4
    • /
    • pp.272-279
    • /
    • 2021
  • A pump-type eDNA filtering system that can control voltage and hydraulic pressure respectively has been developed, and applied a filter case that can filter out without damaging the filter. The filtering performance of the developed system was evaluated by comparing the eDNA concentration with the conventional vacuum-pressured filtering method at the catchment conduit intake reservoir. The developed system was divided into a voltage control (manual pump system) method and a pressure control (automatic pump system) method, and the pressure was measured during filtering and the pressure change of each system was compared. The voltage control method started with 65 [KPa] at the beginning of the filtering, and as the filtering time elapsed, the amount of filtrate accumulated in the filter increased, so the pressure gradually increased. As a result of controlling the pressure control method to maintain a constant pressure according to the designed algorithm, there was a difference in the width of the hydraulic pressure fluctuation during the filtering process according to the feedback time of the hydraulic pressure sensor, and it was confirmed that the pressure was converged to the target pressure. The filtering performance of the developed system was confirmed by measuring the eDNA concentration and comparing the voltage control method and the hydraulic control method with the control group. The voltage control method obtained similar results to the control group, but the hydraulic control method showed lower results than the control group. It is considered that the low eDNA concentration in the hydraulic control method is due to the large pressure deviation during filtering and maintaining a constant pressure during the filtering process. Therefore, rather than maintaining a constant pressure during filtering, it was confirmed that a voltage control method in which the pressure is gradually increased as the filtrate increases with the lapse of filtering time is suitable for collecting eDNA. As a result of comparing the average concentration of eDNA in lentic zone and lotic zone as a control group, it was found to be 96.2 [ng µL-1] and 88.4 [ng µL-1l], respectively. The result of comparing the average concentration of eDNA by the pump method was also high in the lentic zone sample as 90.7 [ng µL-1] and 74.8 [ng µL-1] in the lentic zone and the lotic zone, respectively. The high eDNA concentration in the lentic zone is thought to be due to the influence of microorganisms including the remaining eDNA.

Synthesis and Structural Study of Extraframework ZrI6Tl119+ Cationic Cluster in Zeolite A (제올라이트 A 동공 내 비골격 ZrI6Tl119+ 양이온 클러스터의 합성과 구조 연구)

  • Hyeon Seung, Lim;Jong Sam, Park;Cheol Woong, Kim;Woo Taik, Lim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.447-455
    • /
    • 2022
  • Fully dehydrated Tl12-LTA (|Tl12|[Si12Al12O48]-LTA,Tl12-A) was treated with 6.0×103 Pa of ZrI4 (g) at 623 K for 72 hr under anhydrous conditions. The crystal structure of product, |Zr0.25I1.5Tl12|[Si12Al12O48]-LTA, was determined by single-crystal crystallography using synchrotron X-radiation in the cubic space group Pm3m (a = 12.337(2) Å). It was refined using all data to the final error index (for the 712 unique reflections for which Fo> 4σ(Fo) R1/wR2= 0.055/0.189. In this structure, octahedral ZrI62- ions center about 25% of the large cavities (Zr-I = 2.91(4) Å). Each coordinates to eight Tl+ ions and they are further bridged by Tl+ ions in the planes of 8-rings to form a cubic three-dimensional ZrI6Tl119+ cationic cluster. About 1.5 Tl+ ions per unit cell moved to deeper side of sodalite cavity after reaction with ZrI4(g). The remaining Tl+ ions occupy well-established cation positions near 6- and 8-rings.

Research on Radiation Shielding Film for Replacement of Lead(Pb) through Roll-to-Roll Sputtering Deposition (롤투롤 스퍼터링 증착을 통한 납(Pb) 대체용 방사선 차폐필름 개발)

  • Sung-Hun Kim;Jung-Sup Byun;Young-Bin Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.441-447
    • /
    • 2023
  • Lead(Pb), which is currently mainly used for shielding purposes in the medical radiation, has excellent radiation shielding functions, but is continuously exposed to radiation directly or indirectly due to the harmfulness of lead itself to the human body and the inconvenience caused by its heavy weight. Research on shielding materials that are human-friendly, lightweight, and convenient to use that can block risks and replace lead is continuously being conducted. In this study, based on the commonly used polyethylene terephthalate (PET) film and the fabric material used in actual radiation protective clothing, a multi-layer thin film was realized through sputtering and vacuum deposition of bismuth, tungsten, and tin, which are metal materials that can shield radiation. Thus, a shielding film was produced and its applicability as a radiation shielding material was evaluated. The radiation shielding film was manufactured by establishing the optimized conditions for each shielding material while controlling the applied voltage, roll driving speed, and gas supply amount to manufacture the shielding film. The adhesion between the parent material and the shielding metal thin film was confirmed by Cross-cut 100/100, and the stability of the thin film was confirmed through a hot water test for 1 hour to measure the change of the thin film over time. The shielding performance of the finally realized shielding film was measured by the Korea association for radiation application (KARA), and the test conditions (inverse wide beam, tube voltage 50 kV, half layer 1.828 mmAl) were set to obtain an attenuation ratio of 16.4 (initial value 0.300 mGy/s, measured value 0.018 mGy/s) and damping ratio 4.31 (initial value 0.300 mGy/s, measured value 0.069 mGy/s) were obtained. by securing process efficiency for future commercialization, light and shielding films and fabrics were used to lay the foundation for the application of films to radiation protective clothing or construction materials with shielding functions.

Metal Oxides Decorated Carbon Nanotube Freestanding Electrodes for High Performance of Lithium-sulfur Batteries (고성능 리튬-황 전지를 위한 금속산화물을 첨가한 탄소나노튜브 프리스탠딩 전극)

  • Yun Jung Shin;Hyeon Seo Jeong;Eun Mi Kim;Tae Yun Kim;Sang Mun Jeong
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.426-438
    • /
    • 2023
  • Lithium-sulfur batteries, recently attracting attention as next-generation batteries, have high energy density but are limited in application due to sulfur's insulating properties, shuttle phenomenon, and volume expansion. This study used an economical and simple vacuum filtration method to prepare a freestanding electrode without a binder and collector. Carbon nanotubes (CNTs) are used to improve the electrical conductivity of sulfur, where CNT also acts as both collector and conductor. In addition, metal oxides (MOx, M=Ni, Mg), which are easy to adsorb lithium polysulfide, are added to the CNT/S electrode to suppress the shuttle reaction in lithium-sulfur batteries, which is a result of suppressing the loss of active sulfur material due to the excellent adsorption of lithium polysulfide by metal oxides. The MOx@CNT/S electrode exhibited higher capacity characteristics and cycle stability than the CNT/S electrode without metal oxides. Among the MOx@CNT/S electrodes, the NiO@CNT/S electrode displayed a high discharge capacity of 780 mAh g-1 at 1 C and an extreme capacity decrease to 134 mAh g-1 after 200 cycles. Although the MgO@CNT/S electrode exhibited a low discharge rate of 544 mAh g-1 in the initial cycle, it showed good cycle stability with 90% of capacity retention up to 200 cycles. Further, to achieve high capacity and cycle stability, the Ni0.7Mg0.3O@CNT/S electrode, mixed with Ni:Mg in the ratio of 0.7:0.3, manifested an initial discharge rate of 755 mAh g-1 (1 C) and a capacity retention rate of more than 90% after 200 cycles. Therefore, applying binary metal oxides to CNT/S provides a freestanding electrode for developing economical and high-performance Li-S batteries, effectively improving lithium polysulfide's high capacity characteristics and dissolution.

Improvement of Oxygen Isotope Analysis in Seawater samples with Stable Isotope Mass Spectrometer (질량분석기를 이용한 해수 중 산소안정동위원소 분석법의 개선)

  • Park, Mi-Kyung;Kang, Dong-Jin;Kim, Kyung-Ryul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.4
    • /
    • pp.348-353
    • /
    • 2008
  • Oxygen isotope has not been used actively in water mass studies because of difficulties on the analysis though it has advantages as a water mass tracer. The most popular method to analysis the oxygen isotope ratio in water samples is equilibration method: isotopic equilibrium of water with $CO_2$ at constant temperature. The precision of oxygen isotope analysis using commercial automatic $H_2O/CO_2$ equilibrator is ${\pm}0.1%o$. This value is not sufficient for studies in open ocean. The object of this study is to improve the analytical precision enough to apply open ocean studies by modification of the instrument. When sample gas is transferred by the pressure difference, the fractionation which is preferential transportation of light isotope can be occurred since the long transportation path between the equilibrator and mass spectrometer. And the The biggest source of error during the analysis is long distance and large volume of the pathway of sample gas between. Therefore, liquid nitrogen trap and high vacuum system are introduced to the system. The precisions of 14 time analysis of same seawater sample are ${\pm}0.081%o$ and ${\pm}0.021%o$ by built-in system and by modified system in this study, respectively.

Bronchopleural Fistula after Surgery: Therapeutic Efficacy of Bronchial Occluders (수술 후 기관지늑막루: Bronchial Occluder Device의 치료 효과)

  • Young Min Han;Heung Bum Lee;Gong Yong Jin;Kun Yung Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.82 no.2
    • /
    • pp.371-381
    • /
    • 2021
  • Purpose To evaluate the usefulness and effectiveness of bronchial occluders in the treatment of postoperative bronchopleural fistula (BPF). Materials and Methods The subjects of the study were six out of seven postoperative BPF patients who underwent surgery due to tuberculosis or lung cancer between 2009 and 2019. Each patient had a bronchial occluder inserted to treat BPF that occurred after surgery. Of the six patients, five had lung cancers and one had tuberculosis. Five were male and one was female; their ages ranged from 59 to 74 years, with an average of 69 years. The diagnosis of BPF was based on findings from bronchoscopy and CT, and treatment was initiated approximately 1 to 2 weeks after diagnosis. The technical and clinical success of the bronchial occluders in the treatment of BPF was evaluated. The study assessed the postoperative clinical effects of the occluders, survival duration, and additional treatments. Results All six patients were successfully treated. Clinical success was achieved in five patients, while partial clinical success was achieved in one; there was no clinical failure. No complications during the migration of the device or device perforations were observed. Two patients were diagnosed with BPF by CT, while four were diagnosed by bronchoscopy. Lobectomy, bilobectomy, and pneumonectomy were performed on two patients each. The periods between surgery and diagnosis ranged from 1 to 34 months; the average was 10 months. Four patients (59-103 days; an average of 80.5 days) died and two (313 days, 3331 days) survived. The causes of death were aggravation of the underlying disease (n = 2), pulmonary edema and pleural effusion (n = 1), and pneumonia (n = 1). Additional catheter drainage was performed in one patient, and a chest tube was maintained in two patients. Conclusion Bronchial occluders are useful and effective in the treatment of BPF after pulmonary resection.