• 제목/요약/키워드: (${\sigma}$, ${\tau}$)-derivation

검색결과 19건 처리시간 0.026초

(σ, σ)-DERIVATION AND (σ, 𝜏)-WEAK AMENABILITY OF BEURLING ALGEBRA

  • Chen, Lin;Zhang, Jianhua
    • 대한수학회보
    • /
    • 제58권5호
    • /
    • pp.1209-1219
    • /
    • 2021
  • Let G be a topological group with a locally compact and Hausdorff topology. Let ω be a diagonally bounded weight on G. In this paper, (σ, σ)-derivation and (σ, 𝜏)-weak amenability of the Beurling algebra L1ω(G) are studied, where σ, 𝜏 are isometric automorphisms of L1ω(G). We prove that every continuous (σ, σ)-derivation from L1ω(G) into measure algebra Mω(G) is (σ, σ)-inner and the Beurling algebra L1ω(G) is (σ, 𝜏)-weakly amenable.

응력무차원화 변환을 이용한 Hoek-Brown 파괴함수의 Mohr 파괴포락선 유도 (Derivation of Mohr Envelope of Hoek-Brown Failure Criterion Using Non-Dimensional Stress Transformation)

  • 이연규
    • 터널과지하공간
    • /
    • 제24권1호
    • /
    • pp.81-88
    • /
    • 2014
  • Hoek-Brown 파괴함수를 적용하여 암반구조물의 안정성 분석을 수행하는 경우 암반의 강도를 내부마찰각과 점착력을 이용하여 평가해야하는 경우가 있다. 이러한 경우 ${\sigma}_1-{\sigma}_3$ 관계로 표시된 본래의 Hoek-Brown 함수는 수직응력 (${\sigma}$)과 전단응력 (${\tau}$) 관계인 Mohr 파괴포락선으로 변환되어야 한다. 이 연구에서는 Hoek-Brown 파괴함수의 Mohr 파괴포락선을 구하는 새로운 방법을 제시하였다. 제시한 방법은 Londe (1988)가 제안한 응력무차원화 변환방법을 기초로 하였다. 검증 예제를 통해 새로 유도된 ${\sigma}-{\tau}$ 관계식이 Bray가 유도한 관계식과 정확히 일치한다는 것이 확인되었다.

ON GENERALIZED (σ, τ)-DERIVATIONS II

  • Argac, Nurcan;Inceboz, Hulya G.
    • 대한수학회지
    • /
    • 제47권3호
    • /
    • pp.495-504
    • /
    • 2010
  • This paper continues a line investigation in [1]. Let A be a K-algebra and M an A/K-bimodule. In [5] Hamaguchi gave a necessary and sufficient condition for gDer(A, M) to be isomorphic to BDer(A, M). The main aim of this paper is to establish similar relationships for generalized ($\sigma$, $\tau$)-derivations.

Correction to "On prime near-rings with generalized (σ, τ)- derivations, Kyungpook Math. J., 45(2005), 249-254"

  • Al Hwaeer, Hassan J.;Albkwre, Gbrel;Turgay, Neset Deniz
    • Kyungpook Mathematical Journal
    • /
    • 제60권2호
    • /
    • pp.415-421
    • /
    • 2020
  • In the proof of Theorem 3 on p.253 in [4], both right and left distributivity are assumed simultaneously which makes the proof invalid. We give a corrected proof for this theorem by introducing an extension of Lemma 2.2 in [2].

GENERALIZED COHOMOLOGY GROUP OF TRIANGULAR BANACH ALGEBRAS OF ORDER THREE

  • Motlagh, Abolfazl Niazi;Bodaghi, Abasalt;Tanha, Somaye Grailoo
    • 호남수학학술지
    • /
    • 제42권1호
    • /
    • pp.105-121
    • /
    • 2020
  • The main result of this article is to factorize the first (σ, τ)-cohomology group of triangular Banach algebra 𝓣 of order three with coefficients in 𝓣 -bimodule 𝓧 to the first (σ, τ)-cohomology groups of Banach algbras 𝓐, 𝓑 and 𝓒, where σ, τ are continuous homomorphisms on 𝓣. As a direct consequence, we find necessary and sufficient conditions for 𝓣 to be (σ, τ)-weakly amenable.

ON A LIE RING OF GENERALIZED INNER DERIVATIONS

  • Aydin, Neset;Turkmen, Selin
    • 대한수학회논문집
    • /
    • 제32권4호
    • /
    • pp.827-833
    • /
    • 2017
  • In this paper, we define a set including of all $f_a$ with $a{\in}R$ generalized derivations of R and is denoted by $f_R$. It is proved that (i) the mapping $g:L(R){\rightarrow}f_R$ given by g (a) = f-a for all $a{\in}R$ is a Lie epimorphism with kernel $N_{{\sigma},{\tau}}$ ; (ii) if R is a semiprime ring and ${\sigma}$ is an epimorphism of R, the mapping $h:f_R{\rightarrow}I(R)$ given by $h(f_a)=i_{{\sigma}(-a)}$ is a Lie epimorphism with kernel $l(f_R)$ ; (iii) if $f_R$ is a prime Lie ring and A, B are Lie ideals of R, then $[f_A,f_B]=(0)$ implies that either $f_A=(0)$ or $f_B=(0)$.