DOI QR코드

DOI QR Code

GENERALIZED COHOMOLOGY GROUP OF TRIANGULAR BANACH ALGEBRAS OF ORDER THREE

  • Received : 2019.04.13
  • Accepted : 2019.06.27
  • Published : 2020.03.25

Abstract

The main result of this article is to factorize the first (σ, τ)-cohomology group of triangular Banach algebra 𝓣 of order three with coefficients in 𝓣 -bimodule 𝓧 to the first (σ, τ)-cohomology groups of Banach algbras 𝓐, 𝓑 and 𝓒, where σ, τ are continuous homomorphisms on 𝓣. As a direct consequence, we find necessary and sufficient conditions for 𝓣 to be (σ, τ)-weakly amenable.

Keywords

References

  1. W. G. Bade, P. C. Curtis and H. G. Dales, Amenability and weak amenability for Beurling and Lipschits algebra, Proc. London Math. Soc. 55(3) (1987), 359-377.
  2. A. Bodaghi, Generalized notion of weak module amenability, Hacettepe J. Math. Stat. 43(1) (2014), 85-95.
  3. A. Bodaghi, Module ($\varphi$, $\psi$)-amenability of Banach algeras, Arch. Math (Brno). 46(4) (2010), 227-235.
  4. A. Bodaghi, M. Eshaghi Gordji and A. R. Medghalchi, A generalization of the weak amenability of Banach algebras, Banach J. Math. Anal. 3(1) (2009), 131-142. https://doi.org/10.15352/bjma/1240336430
  5. A. Bodaghi and B. Shojaee, A generalized notion of n-weak amenability, Math. Bohemica. 139(1) (2014), 99-112. https://doi.org/10.21136/MB.2014.143639
  6. W. S. Cheung, Mappings on triangular algebras, Ph.D. Dissertation. University of Victoria, 2000.
  7. A. Ebadian, M. E. Gordji and A. Jabbari, Derivations on triangular Banach algebras of order three, arXiv:1303.4202 (2013).
  8. A. Donsig, B. E. Forrest and L.W. Marcoux, On derivations of semi-nest algebras, Houston J. Math. 22(2) (1996), 375-398.
  9. M. Eshaghi Gordji, A. Jabbari and A. Bodaghi, Generalization of the weak amenability on various Banach algebras, Math. Bohemica. 144(1) (2019), 1-11. https://doi.org/10.21136/MB.2018.0046-17
  10. B. E. Forrest and L. W. Marcoux, Weak amenability of triangular Banach algebras, Trans. Amer. Math. Soc. 354(4) (2002), 1435-1452. https://doi.org/10.1090/S0002-9947-01-02957-9
  11. B. E. Forrest and L. W. Marcoux, Derivations of triangular Banach algebras, Indiana Univ. Math. J. 45 (1996), 441-462.
  12. H. Inceboz and B. Arslan, The first module (${\sigma}$,${\tau}$)-cohomology group of triangular Banach algebras of order threes, J. Alg. Appl. (2018) 1850225 (24 pages), DOI:10.1142/S0219498818502250
  13. A. Jabbari and H. Hosseinzadeh, Second (${\sigma}$,${\tau}$)-cohomology of triangular Banach algebras, U. P. B. Sci. Bull. Series A. 75(3) (2013), 59-66.
  14. B. E. Johnson, Weak amenability of group Algebras, Bull. London Math. Soc. 23(3) (1991), 281-284. https://doi.org/10.1112/blms/23.3.281
  15. B. E. Johnson, Derivation from $L^1$(G) into $L^1$(G) and $L^{\infty}$(G), Lecture Note in Math. 1359 (1988), 191-198. https://doi.org/10.1007/BFb0086599
  16. B. E. Johnson, Cohomology in Banach Algebras, Mem. Amer. Math. Soc. 127, 1972.
  17. M. Khosravi, M. S. Moslehian and A. N. Motlagh Vanishing of first (${\sigma}$ - ${\tau}$)-cohomology group of triangular Banach algbras, Meth. Func. Anal. Top. 14(4) (2008), 351-360.
  18. M. S. Moslehian, A. N. Motlagh, Some notes on (${\sigma}$,${\tau}$)-amenability of Banach algebras, Stud. Univ. Babes-Bolyai Math. 53(3) (2008), 57-68.
  19. A. N. Motlagh, M. Khosravi and A. Bodaghi, Topological Hochschild (${\sigma}$,${\tau}$)-cohomology groups and (${\sigma}$,${\tau}$)-super weak amenability of Banach algebras, Kragujevac J. Math. 44(1) (2020), 145-156. https://doi.org/10.46793/KgJMat2001.145M
  20. A. M. Sinclair and R. R. Smith, Hochschild Cohomology of von Neumann Algebras, Cambridge Univ. Press, Cambridge, 1995.