References
- W. G. Bade, P. C. Curtis and H. G. Dales, Amenability and weak amenability for Beurling and Lipschits algebra, Proc. London Math. Soc. 55(3) (1987), 359-377.
- A. Bodaghi, Generalized notion of weak module amenability, Hacettepe J. Math. Stat. 43(1) (2014), 85-95.
-
A. Bodaghi, Module (
$\varphi$ ,$\psi$ )-amenability of Banach algeras, Arch. Math (Brno). 46(4) (2010), 227-235. - A. Bodaghi, M. Eshaghi Gordji and A. R. Medghalchi, A generalization of the weak amenability of Banach algebras, Banach J. Math. Anal. 3(1) (2009), 131-142. https://doi.org/10.15352/bjma/1240336430
- A. Bodaghi and B. Shojaee, A generalized notion of n-weak amenability, Math. Bohemica. 139(1) (2014), 99-112. https://doi.org/10.21136/MB.2014.143639
- W. S. Cheung, Mappings on triangular algebras, Ph.D. Dissertation. University of Victoria, 2000.
- A. Ebadian, M. E. Gordji and A. Jabbari, Derivations on triangular Banach algebras of order three, arXiv:1303.4202 (2013).
- A. Donsig, B. E. Forrest and L.W. Marcoux, On derivations of semi-nest algebras, Houston J. Math. 22(2) (1996), 375-398.
- M. Eshaghi Gordji, A. Jabbari and A. Bodaghi, Generalization of the weak amenability on various Banach algebras, Math. Bohemica. 144(1) (2019), 1-11. https://doi.org/10.21136/MB.2018.0046-17
- B. E. Forrest and L. W. Marcoux, Weak amenability of triangular Banach algebras, Trans. Amer. Math. Soc. 354(4) (2002), 1435-1452. https://doi.org/10.1090/S0002-9947-01-02957-9
- B. E. Forrest and L. W. Marcoux, Derivations of triangular Banach algebras, Indiana Univ. Math. J. 45 (1996), 441-462.
-
H. Inceboz and B. Arslan, The first module (
${\sigma}$ ,${\tau}$ )-cohomology group of triangular Banach algebras of order threes, J. Alg. Appl. (2018) 1850225 (24 pages), DOI:10.1142/S0219498818502250 -
A. Jabbari and H. Hosseinzadeh, Second (
${\sigma}$ ,${\tau}$ )-cohomology of triangular Banach algebras, U. P. B. Sci. Bull. Series A. 75(3) (2013), 59-66. - B. E. Johnson, Weak amenability of group Algebras, Bull. London Math. Soc. 23(3) (1991), 281-284. https://doi.org/10.1112/blms/23.3.281
-
B. E. Johnson, Derivation from
$L^1$ (G) into$L^1$ (G) and$L^{\infty}$ (G), Lecture Note in Math. 1359 (1988), 191-198. https://doi.org/10.1007/BFb0086599 - B. E. Johnson, Cohomology in Banach Algebras, Mem. Amer. Math. Soc. 127, 1972.
-
M. Khosravi, M. S. Moslehian and A. N. Motlagh Vanishing of first (
${\sigma}$ -${\tau}$ )-cohomology group of triangular Banach algbras, Meth. Func. Anal. Top. 14(4) (2008), 351-360. -
M. S. Moslehian, A. N. Motlagh, Some notes on (
${\sigma}$ ,${\tau}$ )-amenability of Banach algebras, Stud. Univ. Babes-Bolyai Math. 53(3) (2008), 57-68. -
A. N. Motlagh, M. Khosravi and A. Bodaghi, Topological Hochschild (
${\sigma}$ ,${\tau}$ )-cohomology groups and (${\sigma}$ ,${\tau}$ )-super weak amenability of Banach algebras, Kragujevac J. Math. 44(1) (2020), 145-156. https://doi.org/10.46793/KgJMat2001.145M - A. M. Sinclair and R. R. Smith, Hochschild Cohomology of von Neumann Algebras, Cambridge Univ. Press, Cambridge, 1995.