• Title/Summary/Keyword: (${\epsilon},\

Search Result 769, Processing Time 0.022 seconds

The friction effects at high strain rates of materials under dynamic compression loads (동압축 하중을 받는 재료의 고변형도율에서의 마찰영향)

  • 김문생
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.454-464
    • /
    • 1987
  • The objective of this research is to analyze and evaluate the dynamic flow curve of metals under impact loading at both high strain rate (.epsilon.=1/h dh/dt > 10$\^$3/m/s/m) and large strain (.epsilon.=In h/h$\_$0/ > 1.0). A test method for dynamic compression of metal disc is described. The velocity of the striker face and the force on the anvil are measured during the impact period. From these primitive data the axial stress, strain, and strain rate of the disc are obtained. The Strain rate is determined by the striker velocity divided by the specimen height. This gives a slightly increasing strain rate over most of the deformation period. Strain rates of 100 to 10,000 per second are achieved. Attainable final strains are 150%. A discussion of several problem areas is presented. The friction on the specimen surfaces, the determination of the frictional coefficient, the influence of the specimen geometry (h$\_$0//d$\_$0/ ratio) on the friction effect, the lock-up condition for a given configuration, the friction correction factor, and the evaluation of several lubricants are given. The flow function(stress verus strain) is dependent on the material condition(e.g., prior cold work), specimen geometry, strain rate, and temperature.

Resonance May Elucidate New Bone Formation Induced by Low amplitude and High frequency Mechanical Stimuli (고주파 미세자극에 의한 뼈의 생성에 관한 모델링)

  • Yoon, Young June;Kim, Moon-Hwan;Bae, Cheol-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.27-32
    • /
    • 2008
  • Bone is a self-assembly material. It is known that the low amplitude and high frequency mechanical stimulus, which is much less amplitude but higher frequency than those induced by the normal activity, can induce new bone formation. The vibrating resonance is employed to elucidate why new bone is formed by this kind of mechanical stimulus. For example, as 30 Hz and $5{\mu}{\epsilon}$ mechanical stimulus is applied at the wall of canaliculus (the tiny tube type pathway of bone fluid flow and the diameter of canaliculus is less than 200nm), the osteocytic cell membrane experiences $1,000{\mu}{\epsilon}$ strain due to the vibrating resonance. Two experiments will follow after this pilot study; (1) observing the MAPK pathway of osteocytes by using in-vitro cell culture and (2) visualizing the actin filament network in the osteocytes by using the imaging technique, such as confocal laser scanning microscope.

  • PDF

NUMERICAL IMPLEMENTATION OF THE QMR ALGORITHM BY USING DISCRETE STOCHASTIC ARITHMETIC

  • TOUTOUNIAN FAEZEH;KHOJASTEH SALKUYEH DAVOD;ASADI BAHRAM
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.457-473
    • /
    • 2005
  • In each step of the quasi-minimal residual (QMR) method which uses a look-ahead variant of the nonsymmetric Lanczos process to generate basis vectors for the Krylov subspaces induced by A, it is necessary to decide whether to construct the Lanczos vectors $v_{n+l}\;and\;w{n+l}$ as regular or inner vectors. For a regular step it is necessary that $D_k\;=\;W^{T}_{k}V_{k}$ is nonsingular. Therefore, in the floating-point arithmetic, the smallest singular value of matrix $D_k$, ${\sigma}_min(D_k)$, is computed and an inner step is performed if $\sigma_{min}(D_k)<{\epsilon}$, where $\epsilon$ is a suitably chosen tolerance. In practice it is absolutely impossible to choose correctly the value of the tolerance $\epsilon$. The subject of this paper is to show how discrete stochastic arithmetic remedies the problem of this tolerance, as well as the problem of the other tolerances which are needed in the other checks of the QMR method with the estimation of the accuracy of some intermediate results. Numerical examples are used to show the good numerical properties.

A Novel Epsilon Near Zero Tunneling Circuit Using Double-Ridge Rectangular Waveguide

  • Kim, Byung-Mun;Son, Hyeok-Woo;Hong, Jae-Pyo;Cho, Young-Ki
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.1
    • /
    • pp.36-42
    • /
    • 2014
  • In this paper, an epsilon near zero (ENZ) tunneling circuit using a double-ridge rectangular waveguide (RWG) is proposed for the miniaturization of a waveguide component. The proposed ENZ channel and is located in the middle of the input-output RWG (IORWG). The ratio of the height to the width of the channel waveguide is very small compared to the IORWG. By properly adjusting the ridge dimensions, the tunneling frequency of the proposed ENZ channel can be lowered to near the cut-off frequency of the IORWG. For the proposed ENZ tunneling circuit, the approach adopted for extracting the effective permittivity, effective permeability;normalized effective wave impedance, and propagation constant from the simulated scattering parameters was explained. The extracted parameters verified that the proposed channel is an ENZ channel and electromagnetic energy is tunneling through the channel. Simulation and measurement results of the fabricated ENZ channel structure agreed.

GENERALIZED WEYL'S THEOREM FOR ALGEBRAICALLY $k$-QUASI-PARANORMAL OPERATORS

  • Senthilkumar, D.;Naik, P. Maheswari;Sivakumar, N.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.655-668
    • /
    • 2012
  • An operator $T\;{\varepsilon}\;B(\mathcal{H})$ is said to be $k$-quasi-paranormal operator if $||T^{k+1}x||^2\;{\leq}\;||T^{k+2}x||\;||T^kx||$ for every $x\;{\epsilon}\;\mathcal{H}$, $k$ is a natural number. This class of operators contains the class of paranormal operators and the class of quasi - class A operators. In this paper, using the operator matrix representation of $k$-quasi-paranormal operators which is related to the paranormal operators, we show that every algebraically $k$-quasi-paranormal operator has Bishop's property ($\beta$), which is an extension of the result proved for paranormal operators in [32]. Also we prove that (i) generalized Weyl's theorem holds for $f(T)$ for every $f\;{\epsilon}\;H({\sigma}(T))$; (ii) generalized a - Browder's theorem holds for $f(S)$ for every $S\;{\prec}\;T$ and $f\;{\epsilon}\;H({\sigma}(S))$; (iii) the spectral mapping theorem holds for the B - Weyl spectrum of T.

Simulation of Three-Dimensional Turbulent Flows around an Ahmed Body-Evaluation of Turbulence Models- (Ahmed Body 주위의 3차원 난류유동 해석 - 난류모델의 평가)

  • Myong, H.K.;Jin, E.;Park, H.K.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.873-881
    • /
    • 1997
  • A numerical simulation has been carried out for three-dimensional turbulent flows around an Ahmed body. The Reynolds-averaged Navier-Stokes equation is solved with the SIMPLE method in general curvilinear coordinates system. Several k-.epsilon. turbulence models with two convective difference schemes are evaluated for the performance such as drag coefficient, velocity and pressure fields. The drag coefficient, the velocity and pressure fields are found to be changed considerably with the adopted k-.epsilon. turbulence models as well as the finite difference schemes. The results of simulation prove that the RNG k-.epsilon. model with the QUICK scheme predicts fairly well the tendency of velocity and pressure fields and gives more reliable drag coefficient. It is also demonstrated that the large difference between simulations and experiment in the drag coefficient is due to relatively high predicted values of pressure drag from vertical rear end base.

Internal Stress, Anelasticity and Recovery in Steady State Creep of 2024 Al Alloy at High Temperature (2024 Al 합금의 고온 정상크리이프 중의 내부응력의 탄성 및 회복에 관한 연구)

  • 박경동;오세욱;강상훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.292-297
    • /
    • 1986
  • Measurements of internal stress .sigma.$_{i}$, anelastic strain .epsilon.$_{A}$ and recovery rate .gamma. were made in steady state creep of 2024 Al alloys over a wide range of stresses at temperatures between 260.deg. C and 380.deg. C, for the purpose of investigating the relations among the three parameters. Values of .sigma.$_{i}$ were obtained by the method of strain transient dip test, and those of .epsilon.$_{A}$ and .gamma. were determined from the results of sudden stress removal or reduction tests. As a main result, it is thought that the anelastic behavior and recovery process are basically dependent on same deformation mechanisms.sms.sms.

Prediction of Fracture Resistance Curves for Nuclear Piping Materials (원자력 배관재료의 파괴저항곡선 예측)

  • 장윤석;석창성;김영진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1051-1061
    • /
    • 1995
  • In order perform leak-before-break design of nuclear piping systems and integrity evaluation of reactor vessels, full stress-strain (.sigma. - .epsilon.) curves and fracture resistance (J-R) curves are required. However it is time-consuming and expensive to obtain J-R curves experimentally. The objective of this paper is to develop two methods for J-R curve prediction. In the first method, elastic-plastic finite element analyses for a series of crack length / specimen width ratio were performed. Accordingly the load versus load line displacement (P .delta.) curve corresponding to the fracture strain is obtained and the J-R curve based on the generalized locus method is obtained. In the second method, the correlation between .sigma.-.epsilon. curves and J-R curves was statistically analyzed and an empirical equation to predict the J-R curve from the .sigma.-.epsilon. test result is proposed. A good correlation between the predicted results based on the proposed methods and the experimental ones is obtained.

Numerical Study on Turbulent Flow in a Conical Diffuser (원추형 디퓨져 내의 난류운동에 관한 수치해석적 연구)

  • 강신형;최영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1971-1978
    • /
    • 1992
  • A turbulent flow in a conical diffuser with total divergence angle of 8.deg. was numerically studied. The low Reynolds number k-.epsilon. model(Launder-Sharma model) was adopted to simulate the turbulence. The continuity and time averaged Navier-Stokes equations in a nonorthogonal coordinate system were solved by a finite volume method based on the fully elliptic formulation. The low Reynolds number k-.epsilon. model reasonably simulates the pressure recovery and the mean velocity components. However, there are also considerable discrepancies between predicted and measured shear stress distribution on the wall and turbulent kinetic energy distributions. It is necessary to investigate the flow structure at the entry of the diffuser, numerically as well as experimentally.

Complete Moment Convergence of Moving Average Processes Generated by Negatively Associated Sequences

  • Ko, Mi-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.4
    • /
    • pp.507-513
    • /
    • 2010
  • Let {$X_i,-{\infty}$ < 1 < $\infty$} be a doubly infinite sequence of identically distributed and negatively associated random variables with mean zero and finite variance and {$a_i,\;-{\infty}$ < i < ${\infty}$} be an absolutely summable sequence of real numbers. Define a moving average process as $Y_n={\sum}_{i=-\infty}^{\infty}a_{i+n}X_i$, n $\geq$ 1 and $S_n=Y_1+{\cdots}+Y_n$. In this paper we prove that E|$X_1$|$^rh$($|X_1|^p$) < $\infty$ implies ${\sum}_{n=1}^{\infty}n^{r/p-2-q/p}h(n)E{max_{1{\leq}k{\leq}n}|S_k|-{\epsilon}n^{1/p}}{_+^q}<{\infty}$ and ${\sum}_{n=1}^{\infty}n^{r/p-2}h(n)E{sup_{k{\leq}n}|k^{-1/p}S_k|-{\epsilon}}{_+^q}<{\infty}$ for all ${\epsilon}$ > 0 and all q > 0, where h(x) > 0 (x > 0) is a slowly varying function, 1 ${\leq}$ p < 2 and r > 1 + p/2.