• Title/Summary/Keyword: 'Graminearum'

Search Result 116, Processing Time 0.021 seconds

Insertional mutagenesis of fusarium graminearum for characterization of genes involved in disease development and mycotoxin production

  • Han, Yon-Kyoung;Lee, Hyo-Jin;Yun, Sung-Hwan;Lee, Yin-Won
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.85.2-86
    • /
    • 2003
  • Fusarium graminearum is an important pathogen of cereal crops in many areas of the world causing head blight and ear rot of small grains. In addition to serious economic losses, this fungus produces mycotoxins, such as trichothecenes and zearalenone on diseased crops and has been a potential threat to human and animal health. To massively identify pathogenesis-related genes from F. graminearum, two representative strains (SCKO4 from rice and Z03643 from wheat) were mutagenized using restriction enzyme-mediated integration (REMI). In total, 20,DOD REMI transformants have been collected from the two strains. So far, 63 mutants for several traits involved in disease development such as virulence, mycotoxin production, and sporulation have been selected from 3,000 REMI transformants. Now, selected mutants of interest have being genetically analyzed using a newly developed outcross method (See Jungkwan Lee et al poster). In addition, cloning and characterization of genomic DNA regions flanking the insertional site in the genome of the mutants are in progress.

  • PDF

Estrogenic Compounds Compatible with a Conditional Gene Expression System for the Phytopathogenic Fungus Fusarium graminearum

  • Lee, Jung-Kwan;Son, Ho-Kyoung;Lee, Yin-Won
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.349-353
    • /
    • 2011
  • The ascomycete fungus Fusarium graminearum is an important plant pathogen responsible for Fusarium head blight in small grains and ear rot on maize. This fungus also produces the estrogenic metabolite, zearalenone (ZEA) that causes estrogenic disorders in humans and animals. Previously, we developed a conditional gene expression system for this fungus using a ZEA-inducible promoter (Pzear). In the present study, four other estrogenic compounds, including ${\beta}$-estradiol, estriol, estrone, and secoisolariciresinol, were screened as possible substitutes for ZEA in this system. Among them, ${\beta}$-estradiol was able to successfully induce the expression of a gene controlled by Pzear, while estrone was only able to partially induce its expression but the other two compounds were not effective. In combination, these results demonstrate that ${\beta}$-estradiol can replace ZEA in this conditional gene expression system, thereby eliminating the need to use the more expensive reagent, ZEA, and facilitating high-throughput functional analyses of F. graminearum in future studies.

The Protein Kinase A Pathway Regulates Zearalenone Production by Modulating Alternative ZEB2 Transcription

  • Park, Ae Ran;Fu, Minmin;Shin, Ji Young;Son, Hokyoung;Lee, Yin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.967-974
    • /
    • 2016
  • Zearalenone (ZEA) is an estrogenic mycotoxin that is produced by several Fusarium species, including Fusarium graminearum. One of the ZEA biosynthetic genes, ZEB2, encodes two isoforms of Zeb2 by alternative transcription, forming an activator (Zeb2L-Zeb2L homooligomer) and an inhibitor (Zeb2L-Zeb2S heterodimer) that directly regulate the ZEA biosynthetic genes in F. graminearum. Cyclic AMP-dependent protein kinase A (PKA) signaling regulates secondary metabolic processes in several filamentous fungi. In this study, we investigated the effects of the PKA signaling pathway on ZEA biosynthesis. Through functional analyses of PKA catalytic and regulatory subunits (CPKs and PKR), we found that the PKA pathway negatively regulates ZEA production. Genetic and biochemical evidence further demonstrated that the PKA pathway specifically represses ZEB2L transcription and also takes part in posttranscriptional regulation of ZEB2L during ZEA production. Our findings reveal the intriguing mechanism that the PKA pathway regulates secondary metabolite production by reprograming alternative transcription.

Natural Occurrence of Fusarium Mycotoxins in Field-collected Maize and Rice in Korea in 2009 (2009년산 옥수수와 벼에서의 Fusarium 곰팡이독소 자연발생량 조사)

  • Lee, Seung-Ho;Son, Seung-Wan;Nam, Young-Ju;Shin, Jean-Young;Lee, Soo-Hyung;Kim, Mi-Ja;Yun, Jong-Chul;Ryu, Jae-Gee;Lee, Theresa
    • Research in Plant Disease
    • /
    • v.16 no.3
    • /
    • pp.306-311
    • /
    • 2010
  • To detect Fusarium mycotoxins, grain samples were collected from 32 rice fields all over the country and from 19 maize fields in eastern and midland provinces in Korea in 2009. Maize contamination with Fusarium species (54.9%) was higher than in rice (8.2%). Using Fusarium species specific PCR primer sets (Fg16 and VERT), 58 and 354 of total 506 isolates from maize samples were putatively identified as F. graminearum (11.5%) and F. verticillioides (70.0%), respectively. From rice samples, 276 of 315 isolates (87.8%) were putatively identified as F. graminearum but F. verticillioides was not identified. LC or LC-MS analysis of the samples revealed that fumonisin was the most commonly detected mycotoxin in maize samples but its level was below the regulation limit. Only two maize samples were contaminated with deoxynivalenol and zearalenone at the levels above the regulation limit. In rice samples, contamination with zearalenone was common but the levels were below the regulation limit. This study showed that most of the Korean maize and rice samples collected in 2009 were contaminated with Fusarium mycotoxins but the levels were below the Korean regulations for deoxynivalenol, fumonisin and zearalenone.

Chemosensitization of Fusarium graminearum to Chemical Fungicides Using Cyclic Lipopeptides Produced by Bacillus amyloliquefaciens Strain JCK-12

  • Kim, K.;Lee, Y.;Ha, A.;Kim, Ji-In;Park, A.R.;Yu, N.H.;Son, H.;Choi, G.J.;Park, H.W.;Lee, C.W.;Lee, T.;Lee, Y.W.;Kim, J.C.
    • 한국균학회소식:학술대회논문집
    • /
    • 2018.05a
    • /
    • pp.44-44
    • /
    • 2018
  • Fusarium head blight (FHB) caused by infection with Fusarium graminearum leads to enormous losses to crop growers, and may contaminate grains with a number of Fusarium mycotoxins that pose serious risks to human and animal health. Antagonistic bacteria that are used to prevent FHB offer attractive alternatives or supplements to synthetic fungicides for controlling FHB without the negative effects of chemical management. Out of 500 bacterial strains isolated from soil, Bacillus amyloliquefaciens JCK-12 showed strong antifungal activity and was considered a potential source for control strategies to reduce FHB. B. amyloliquefaciens JCK-12 produces several cyclic lipopeptides (CLPs) including iturin A, fengycin, and surfactin. Iturin A inhibits spore germination of F. graminearum. Fengycin or surfactin alone did not display any inhibitory activity against spore germination at concentrations less than 30 ug/ml, but a mixture of iturin A, fengycin, and surfactin showed a remarkable synergistic inhibitory effect on F. graminearum spore germination. The fermentation broth and formulation of B. amyloliquefaciens JCK-12 strain reduced the disease incidence of FHB in wheat. Furthermore, co-application of B. amyloliquefaciens JCK-12 and chemical fungicides resulted in synergistic in vitro antifungal effects and significant disease control efficacy against FHB under greenhouse and field conditions, suggesting that B. amyloliquefaciens JCK-12 has a strong chemosensitizing effect. The synergistic antifungal effect of B. amyloliquefaciens JCK-12 and chemical fungicides in combination may result from the cell wall damage and altered cell membrane permeability in the phytopathogenic fungi caused by the CLP mixtures and subsequent increased sensitivity of F. graminearum to fungicides. In addition, B. amyloliquefaciens JCK-12 showed the potential to reduce trichothecenes mycotoxin production. The results of this study indicate that B. amyloliquefaciens JCK-12 could be used as an available biocontrol agent or as a chemosensitizer to chemical fungicides for controlling FHB disease and as a strategy for preventing the contamination of harvested crops with mycotoxins.

  • PDF

A study on deoxynivalenol production by water-saturated silical gel chromatography (물포화 Silica gel chromatography에 의한 Deoxynivalenol 생산에 관한 연구)

  • Kim, Jong-shu;Choi, Min-cheol
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.3
    • /
    • pp.413-419
    • /
    • 1992
  • Deoxynivalenol producing isolates of Fusarium Graminearum R 6576 was grown on rice for 25 days at 19,25 and $28^{\circ}C$. Maximum production of deoxynivalenol(DON) by Fusarium graminearum R 6575 occurred at $28^{\circ}C$ and 20 days. Maximum concentration of 940 ppm DON were obtained after 20 days at an initial moisture content of 40%. A DON derivative, 15-acetyl-DON (15-ADON), was also found at concentrations of 150~300ppm after 5~10 days. Crude culture extracts were purified by water-saturated silica gel column chromatography which selectivity extracted DON when methylene chloride was as the mobile phase. Purity of crystallized DON was verified by thin layer and high performance liquid chromatography. Also this method was advantage method or production of DON and require little organic sorbent than the other methods.

  • PDF

Resistance of Fusarium fujikuroi Isolates to Hydrogen Peroxide and Its Application for Fungal Isolation

  • Youn, Kihoon;Choi, Hyo-Won;Shin, Dong Bum;Jung, Boknam;Lee, Jungkwan
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.227-230
    • /
    • 2015
  • The ascomycete fungus Fusarium fujikuroi causes bakanae disease in rice and this disease has been reemerging in Korea. Other fungal species including F. graminearum and Magnaporthe oryzae are often associated with F. fujikuroi, hampering pure isolation of F. fujikuroi from rice. In this study, we modified a selective medium for F. fujikuroi as supplementing both pentachloronitrobenzene and hydrogen peroxide into minimal medium. This medium efficiently suppressed the vegetative growth of F. graminearum and M. oryzae, but did not significantly reduce F. fujikuroi growth, providing an efficient tool for isolating F. fujikuroi.

Screening of antifungal activities of Bacillus thuringiensis strains for the development of biocontrol agents of plant diseases

  • Kim, G. H.;Kim, D. S.;Lee, D.H.;J. S. Hur;Y. J. Koh
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.99.2-99
    • /
    • 2003
  • An attempt was made to screen antifungal activities of Bacillus thuringiensis strains on various plant pathogens, Botryosphaeria dothidea, Diaporthe actinidiae, Botrytis cinerea, Glomerella cingulata, Colletorichum cocodes, Sclerotinia scierotiorum, Alternaria alternata, Helicobuidium mompa, Bipolaris coicis, Fusarium graminearum and Rhizoctosnia solani. Ten and forty-five strains of B. thuringiensis were isolated from animal feces in Korea and Japan, respectively. Inhibitory effects of the strains on the mycelial growth of the pathogens were examined on the mixed media of potato dextrose agar and nutrient agar. Approximately half of the strains inhibited the mycelial growth of one or more pathogens. Most of the pathogens were inhibited by any of the strains but Fusarium graminearum and Rhizoctonia solani were not inhibited at all. This is the first report that B. thuringiensis shows a potent antifungal activity on plant pathogens in Korea.

  • PDF