DOI QR코드

DOI QR Code

Natural Occurrence of Fusarium Mycotoxins in Field-collected Maize and Rice in Korea in 2009

2009년산 옥수수와 벼에서의 Fusarium 곰팡이독소 자연발생량 조사

  • Lee, Seung-Ho (Microbial Safety Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Son, Seung-Wan (Microbial Safety Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Nam, Young-Ju (Microbial Safety Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Shin, Jean-Young (Microbial Safety Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Soo-Hyung (Microbial Safety Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kim, Mi-Ja (Microbial Safety Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Yun, Jong-Chul (Microbial Safety Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Ryu, Jae-Gee (Microbial Safety Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Theresa (Microbial Safety Division, National Academy of Agricultural Science, Rural Development Administration)
  • 이승호 (국립농업과학원 농산물안정성부 유해생물과) ;
  • 손승완 (국립농업과학원 농산물안정성부 유해생물과) ;
  • 남영주 (국립농업과학원 농산물안정성부 유해생물과) ;
  • 신진영 (국립농업과학원 농산물안정성부 유해생물과) ;
  • 이수형 (국립농업과학원 농산물안정성부 유해생물과) ;
  • 김미자 (국립농업과학원 농산물안정성부 유해생물과) ;
  • 윤종철 (국립농업과학원 농산물안정성부 유해생물과) ;
  • 류재기 (국립농업과학원 농산물안정성부 유해생물과) ;
  • 이데레사 (국립농업과학원 농산물안정성부 유해생물과)
  • Received : 2010.11.10
  • Accepted : 2010.11.21
  • Published : 2010.12.01

Abstract

To detect Fusarium mycotoxins, grain samples were collected from 32 rice fields all over the country and from 19 maize fields in eastern and midland provinces in Korea in 2009. Maize contamination with Fusarium species (54.9%) was higher than in rice (8.2%). Using Fusarium species specific PCR primer sets (Fg16 and VERT), 58 and 354 of total 506 isolates from maize samples were putatively identified as F. graminearum (11.5%) and F. verticillioides (70.0%), respectively. From rice samples, 276 of 315 isolates (87.8%) were putatively identified as F. graminearum but F. verticillioides was not identified. LC or LC-MS analysis of the samples revealed that fumonisin was the most commonly detected mycotoxin in maize samples but its level was below the regulation limit. Only two maize samples were contaminated with deoxynivalenol and zearalenone at the levels above the regulation limit. In rice samples, contamination with zearalenone was common but the levels were below the regulation limit. This study showed that most of the Korean maize and rice samples collected in 2009 were contaminated with Fusarium mycotoxins but the levels were below the Korean regulations for deoxynivalenol, fumonisin and zearalenone.

2009년 국내산 옥수수 19점과 벼 32점을 대상으로 Fusarium 오염 및 Fusarium 독소 오염을 조사하였다. 옥수수와 벼 시료의 Fusarium 오염률은 각각 54.9%와 8.2%로 확인되었으며, 종 특이 primer를 이용한 PCR 증폭결과 옥수수시료에서 분리된 506균주 중 58균주의 F.graminearum 추정균주(11.5%)와 354균주의 F. verticillioides 추정균주(70.0%)가 동정되었다. 또한 벼의 경우, 분리된 315균주 중 276균주(87.8%)가 F. graminearum으로 추정 되었으며, F. verticillioides 추정균주는 검출되지 않았다. LC 및 LC-MS를 이용한 Fusarium 독소(DON, NIV, ZEA, FB)의 자연발생량 조사 결과, DON과 ZEA이 각각 2개의 옥수수 시료에서만 기준치 이상 검출되었다. FB는 대부분의 옥수수 시료와 한 개의 벼 시료에서 검출 되었으나 모두 기준치 이하였다. 따라서 본 연구에서 사용된 2009년산 옥수수와 벼의 곰팡이독소 오염수준은 대부분 기준치 이하로 심각하지 않았다.

Keywords

References

  1. AOAC International. 1990. Method No. 986.18. In: Helrich, K. (Ed.), Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed., Arlington.
  2. Ayalew, A., Fehrmann, H., Lepschy, J., Beck, R. and Abate, D. 2006. Natural occurrence of mycotoxins in staple cereals from Ethiopia. Mycopathologia 162: 57-63. https://doi.org/10.1007/s11046-006-0027-8
  3. McMullen, M., Jones, R. and Gallenberg, D. 1997. Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis. 81: 1340-1348. https://doi.org/10.1094/PDIS.1997.81.12.1340
  4. Desjardins, A. E. 2006. Fusarium mycotoxins: chemistry, genetics and biology. APS Press, St. Paul, MN.
  5. Desjardins, A. E., Busman, M., Manandhar, G., Jarosz, A. M., Manandhar, H. K. and Proctor, R. H. 2008. Gibberella ear rot of maize (Zea mats) in Napal: Distribution of the mycotoxins nivalenol and deoxynivalenol in naturally and experimentally infected maize. J. Agric. Food Chem. 56: 5428-5436. https://doi.org/10.1021/jf8003702
  6. Lee, Y. W., Jeon, J. J., Kim, H., Jang, I. Y., Kim, H. S., Yun, S. H. and Kim, J. G. 2004. Lineage composition and trichothecenes production of Gibberella zeae population in Korea, pp. 117- 122. In T. Yoshizawa (ed.), New horizons of mycotoxicology for assuring food safety. Japanese Association of Mycotoxicology, Kagawa, Japan.
  7. Leslie, J. F. and Summerell, B. A. 2006. The Fusarium laboratory manual. Blackwell Professional, Ames, IA.
  8. Nicholson, P., Simpson, D. R., Weston, G., Rezanoor, H., Lees, N., Parry, A. K. and Joyce, D. W. 1998. Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assays. Physiol. Mol. Plant Pathol. 53: 17-37. https://doi.org/10.1006/pmpp.1998.0170
  9. Park, J. W., Choi, S. Y., Hwang, H. J. and Kim, Y. B. 2005. Fungal mycoflora and mycotoxins in Korea polished rice destined for humans. Int. J. Food Microbiol. 103: 305-314. https://doi.org/10.1016/j.ijfoodmicro.2005.02.001
  10. Park, K. J. and Lee, Y. W. 1990. Natural occurrence of Fusarium mycotoxins in Korean barely samples harvested in 1987 and 1989. Proc. Jpn. Assoc. Mycotoxicol. 31: 37-41.
  11. Proctor, R. H., Hohn, T. M. and McCormick, S. P. 1995. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol. Plant-Microbe Interact. 8: 593-601. https://doi.org/10.1094/MPMI-8-0593
  12. da Silva, V. N., de Araujo, J., Durigon, E. L. and Correa, B. 2007. Sequence variability in the FUM1 gene of Fusarium verticillioides strains. Can. J. Microbiol. 53: 446-449. https://doi.org/10.1139/W06-135
  13. Sohn, H. B., Seo, J. A. and Lee, Y. W. 1999. Co-occurrence of Fusarium mycotoxins in mouldy and healthy corn from Korea. Food Addit Contam. 16: 153-158. https://doi.org/10.1080/026520399284109
  14. Yang, L., Lee, T., Yang, X., Yu, D. and Waalwijk, C. 2008. Fusarium population on Chinese barley show a dramatic gradient in mycotoxin profiles. Phytopathology 98: 719-727. https://doi.org/10.1094/PHYTO-98-6-0719
  15. Yun, S. H., Arie, T., Kaneko, I., Yoder, O. C. and Turgeon, B. G. 2000. Molecular organization of mating type loci in heterothallic, homothallic, and asexual Gibberella/Fusarium Species. Fungal Genet Biol. 31: 7-20. https://doi.org/10.1006/fgbi.2000.1226
  16. Zachariasovaa, M., Lacinaa, O., Malachovaa, A., Kostelanskaa, M., Poustkaa, J., Godulab, M. and Hajslovaa, J. 2010. Novel approaches in analysis of Fusarium mycotoxins in cereals employing ultra performance liquid chromatography coupled with high resolution mass spectrometry. Analytica Chimica Acta 662: 51-61. https://doi.org/10.1016/j.aca.2009.12.034

Cited by

  1. Toxigenic Fungal Contaminants in the 2009-harvested Rice and Its Milling-by products Samples Collected from Rice Processing Complexes in Korea vol.17, pp.3, 2011, https://doi.org/10.5423/RPD.2011.17.3.280
  2. Natural Occurrence of Mycotoxin and Fungi in Korean Rice vol.18, pp.4, 2012, https://doi.org/10.5423/RPD.2012.18.4.261
  3. Survey on Contamination of Fusarium Mycotoxins in 2011-harvested Rice and Its By-products from Rice Processing Complexes in Korea vol.19, pp.4, 2013, https://doi.org/10.5423/RPD.2013.19.4.259
  4. Identification of Fusarium subglutinans, the Casual Pathogen of Corn Stalk Rot in Korea and Investigation of Effectiveness of Fungicides Against the Pathogen vol.48, pp.3, 2014, https://doi.org/10.14397/jals.2014.48.3.43
  5. Head Blight Infection in Rice by Heading Stage vol.46, pp.3, 2018, https://doi.org/10.1080/12298093.2018.1496637