• 제목/요약/키워드: % killing

검색결과 604건 처리시간 0.023초

질소량, 온도, 수분포텐셜 조절에 따른 보리유묘의 질소흡수 및 체내동화 (N Uptake and Assimilation of Barley Seedlings as Affected by N Availability, Temperature and Water Potential)

  • 김석동;권용웅;소창호
    • 한국작물학회지
    • /
    • 제38권5호
    • /
    • pp.458-465
    • /
    • 1993
  • 양액재배를 통하여 질소가급도와온도 및 수분부족 조건에 따른 유모기 보리의 질소 흡수 및 동화와 생장의 변화를 조사하였던 바, 그 결과를 요약하면 다음과 같다. 1. 보리의 질소 흡수량은 양액의 질소가급도가 160ppm까지 높아질수록 증가하였으나 흡수된 질소의 동화는 80ppm에서 최고에 달하였고, 이보다 높아졌을 때는 체내에 무기능질소로 축적되었다. 2. 유묘기(3~4엽기)보리의 질소동화 및 건물생산은 엽중 질소농도가 약 3.4%일 때 최고에 달아혔다. 3. 유묘기 보리의 질소 흡수는 -2bar 이하의 수분 포텐셜 조건 또는 5$^{\circ}C$이하의 온도조건에서 현저히 감소하였다.

  • PDF

Enhanced antibacterial activity of tilmicosin against Staphylococcus aureus small colony variants by chitosan oligosaccharide-sodium carboxymethyl cellulose composite nanogels

  • Luo, Wanhe;Liu, Jinhuan;Zhang, Shanling;Song, Wei;Algharib, Samah Attia;Chen, Wei
    • Journal of Veterinary Science
    • /
    • 제23권1호
    • /
    • pp.1.1-1.11
    • /
    • 2022
  • Background: The poor bioadhesion capacity of tilmicosin resulting in treatment failure for Staphylococcus aureus small colony variants (SASCVs) mastitis. Objectives: This study aimed to increase the bioadhesion capacity of tilmicosin for the SASCVs strain and improve the antibacterial effect of tilmicosin against cow mastitis caused by the SASCVs strain. Methods: Tilmicosin-loaded chitosan oligosaccharide (COS)-sodium carboxymethyl cellulose (CMC) composite nanogels were formulated by an electrostatic interaction between COS (positive charge) and CMC (negative charge) using sodium tripolyphosphate (TPP) (ionic crosslinkers). The formation mechanism, structural characteristics, bioadhesion, and antibacterial activity of tilmicosin composite nanogels were studied systematically. Results: The optimized formulation was comprised of 50 mg/mL (COS), 32 mg/mL (CMC), and 0.25 mg/mL (TPP). The size, encapsulation efficiency, loading capacity, polydispersity index, and zeta potential of the optimized tilmicosin composite nanogels were 357.4 ± 2.6 nm, 65.4 ± 0.4%, 21.9 ± 0.4%, 0.11 ± 0.01, and -37.1 ± 0.4 mV, respectively; the sedimentation rate was one. Scanning electron microscopy showed that tilmicosin might be incorporated in nano-sized crosslinked polymeric networks. Moreover, adhesive studies suggested that tilmicosin composite nanogels could enhance the bioadhesion capacity of tilmicosin for the SASCVs strain. The inhibition zone of native tilmicosin, tilmicosin standard, and tilmicosin composite nanogels were 2.13 ± 0.07, 3.35 ± 0.11, and 1.46 ± 0.04 cm, respectively. The minimum inhibitory concentration of native tilmicosin, tilmicosin standard, and tilmicosin composite nanogels against the SASCVs strain were 2, 1, and 1 ㎍/mL, respectively. The in vitro time-killing curves showed that the tilmicosin composite nanogels increased the antibacterial activity against the SASCVs strain. Conclusions: This study provides a potential strategy for developing tilmicosin composite nanogels to treat cow mastitis caused by the SASCVs strain.

말과 소리 저 너머 -『대성당의 살인』의 언어고찰 (Beyond Words and Sounds: A Study on the Language of T. S. Eliot's Murder in the Cathedral)

  • 김한
    • 영어영문학
    • /
    • 제55권4호
    • /
    • pp.539-565
    • /
    • 2009
  • T. S. Eliot attempted the combining of the liturgy of Anglican Church and a drama in Murder in the Cathedral (1935) and created a modern verse drama which comes most close to the regular tragedy like Greek tragedy today. Eliot chose the drama to deliver his religious insight because of its ritualistic origin and its potentiality to deliver a dramatic world which can contain a complete order. The central theme of this play is the martyrdom. The dramatic action of killing the archbishop Thomas Beckett in this play, however, is not treated as important event enough to be a dramatic climax. He is portrayed as a witness to the reality of God's will rather than a man who wills to give up his own life for any religious belief or cause. In Eliot, a martyr is nothing but "a witness" in its ancient sense. This paper purposes to review the language of this play. The various and new meters and rhythms of the language of this play function enough to bring its playwright to encounter 'the real audience' in 'a living theatre'. The interactions between different verbal models also play a big role to make this play a living theatre. Eliot found the poetry which crosses the various classes and levels of the tastes of audience is the most useful poetry. And the poetry of this play proves as the very thing which intensifies the theme of the play and gives the most powerful force to the play. Especially Eliot's poetry succeeds smost in the various and free meters of chorus, which makes Eliot the first playwright since Aeschylus, who could bring the chorus to undertake the function of extending the dramatic action of the play into the universal meaning. In the theatre the real audience identifies themselves with chorus. And the chorus leads the audience to respond to peace which passeth understanding beyond words and sounds of this play, which is the desired response in Eliot's conception of drama.

표적 알파 치료의 현황 및 유용성에 대한 임상적 고찰 (Clinical Review of the Current Status and Utility of Targeted Alpha Therapy)

  • 최상규
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제46권5호
    • /
    • pp.379-394
    • /
    • 2023
  • Targeted Alpha Therapy (TAT) is a new method of cancer treatment that protects normal tissues while selectively killing tumor cells using high cytotoxicity and short range of alpha particles, and target alpha therapy is a highly specific and effective cancer treatment strategy, and its potential has been proven through many clinical and experimental studies. This treatment method accurately delivers alpha particles by selecting specific molecules present in cancer tissue, which has an effective destruction and tumor suppression effect on cancer cells, and one of the main advantages of target alpha treatment is the physical properties of alpha particles. Alpha particles have a very high energy and short effective distance, interacting with target molecules in cancer tissues and having a fatal effect on cancer cells, which is known to cause DNA damage and cell death in cancer cells. TAT has shown positive results in preclinical and clinical studies for various types of cancers, especially those that resist or are unresponsive to existing treatments, but there are several challenges and limitations to overcome for successful clinical transition and application. These include the provision and production of suitable alpha radioisotopes, optimization of target vectors and delivery formulations, understanding and regulation of radiological effects, accurate dosage calculation and toxicity assessment. Future research should focus on developing new or improved isotopes, target vectors, transfer formulations, radiobiological models, combination strategies, imaging techniques, etc. for TAT. In addition, TAT has the potential to improve the quality of life and survival of cancer patients due to the possibility of a new treatment for overcoming cancer, and to this end, prospective research on more carcinomas and more diverse patient groups is needed.

Analysis of the mechano-bactericidal effects of nanopatterned surfaces on implant-derived bacteria using the FEM

  • Ecren Uzun Yaylaci;Mehmet Emin Ozdemir;Yilmaz Guvercin;Sevval Ozturk;Murat Yaylaci
    • Advances in nano research
    • /
    • 제15권6호
    • /
    • pp.567-577
    • /
    • 2023
  • The killing of bacteria by mechanical forces on nanopatterned surfaces has been defined as a mechano-bactericidal effect. Inspired by nature, this method is a new-generation technology that does not cause toxic effects and antibiotic resistance. This study aimed to simulate the mechano-bactericidal effect of nanopatterned surfaces' geometric parameters and material properties against three implant-derived bacterial species. Here, in silico models were developed to explain the interactions between the bacterial cell and the nanopatterned surface. Numerical solutions were performed based on the finite element method. Elastic and creep deformation models of bacterial cells were created. Maximum deformation, maximum stress, maximum strain, as well as mortality of the cells were calculated. The results showed that increasing the peak sharpness and decreasing the width of the nanopatterns increased the maximum deformation, stress, and strain in the walls of the three bacterial cells. The increase in spacing between nanopatterns increased the maximum deformation, stress, and strain in E. coli and P. aeruginosa cell walls it decreased in S. aureus. The decrease in width with the increase in sharpness and spacing increased the mortality of E. coli and P. aeruginosa cells, the same values did not cause mortality in S. aureus cells. In addition, it was determined that using different materials for nanopatterns did not cause a significant change in stress, strain, and deformation. This study will accelerate and promote the production of more efficient mechano-bactericidal implant surfaces by modeling the geometric structures and material properties of nanopatterned surfaces together.

구리 기반 표면코팅 및 산화수에 따른 항균·항바이러스 특성 (Copper-based Surface Coatings and Antimicrobial Properties Dependent on Oxidation States)

  • 고상원
    • 공업화학
    • /
    • 제34권5호
    • /
    • pp.479-487
    • /
    • 2023
  • 구리(Cu)는 저렴한 비용으로 용이하게 도입이 가능하여 다양한 소재 표면에 살균 코팅제로 쓰이고 있다. 자연적 산화 반응이 구리의 효능을 손상시키지 않아 장기간 노출 조건에서도 항균 성능을 유지할 수 있다. 더 나아가 구리 화합물은 그람 음성균 및 그람 양성균 뿐만 아니라, 병원성 효모, 외피 보유 및 외피 미보유 타입의 바이러스에 대해 모두 폭넓은 살균 효과를 보인다. 구리 코팅 표면의 접촉 살균은 구리의 침투로 단백질 변성을 일으키고 세포막 손상으로 뉴클레오티드 및 세포질 등의 내용물이 용출되게 한다. 또한 구리 산화환원 활성에 의한 활성 산소종 생성으로 효소작용을 억제하고 DNA를 파괴하여 세포를 영구적으로 손상시킨다. 구리는 안정한 금속 성질 때문에 나노입자, 이온, 복합물, 합금 등의 여러 형태로 쓰이고 있으며 코팅 방법이 다양하다. 본 총설에서는 구리 이온과 구리 산화물의 대표적인 표면 도입 방법을 살펴보고 구리 산화수에 따른 항균·항바이러스 특성을 다루고자 한다.

Research progress on hydrogel-based drug therapy in melanoma immunotherapy

  • Wei He;Yanqin Zhang;Yi Qu;Mengmeng Liu;Guodong Li;Luxiang Pan;Xinyao Xu;Gege Shi;Qiang Hao;Fen Liu;Yuan Gao
    • BMB Reports
    • /
    • 제57권2호
    • /
    • pp.71-78
    • /
    • 2024
  • Melanoma is one of the most aggressive skin tumors, and conventional treatment modalities are not effective in treating advanced melanoma. Although immunotherapy is an effective treatment for melanoma, it has disadvantages, such as a poor response rate and serious systemic immune-related toxic side effects. The main solution to this problem is the use of biological materials such as hydrogels to reduce these side effects and amplify the immune killing effect against tumor cells. Hydrogels have great advantages as local slow-release drug carriers, including the ability to deliver antitumor drugs directly to the tumor site, enhance the local drug concentration in tumor tissue, reduce systemic drug distribution and exhibit good degradability. Despite these advantages, there has been limited research on the application of hydrogels in melanoma treatment. Therefore, this article provides a comprehensive review of the potential application of hydrogels in melanoma immunotherapy. Hydrogels can serve as carriers for sustained drug delivery, enabling the targeted and localized delivery of drugs with minimal systemic side effects. This approach has the potential to improve the efficacy of immunotherapy for melanoma. Thus, the use of hydrogels as drug delivery vehicles for melanoma immunotherapy has great potential and warrants further exploration.

Assessment of respondents' knowledge, attitudes, and practices toward rabies and associated risk factors in Shone Town, Southern Ethiopia

  • Teketel Gizaw Beresa;Teshita Edaso Beriso;Tesfaye Bekele Kassa;Isayas Asefa Kebede
    • Journal of Veterinary Science
    • /
    • 제25권3호
    • /
    • pp.46.1-46.11
    • /
    • 2024
  • Importance: Rabies is a neglected tropical viral disease most often transmitted through the bite of an infected animal. Objective: This study assessed the level of knowledge, attitudes, and practices of the Shone Ttown community toward rabies. Methods: A survey-based cross-sectional study was conducted in Shone town, Ethiopia, from November 2022 to April 2023. Woreda was selected purposefully, while Kebeles and the study populations were selected by simple random sampling. Four hundred and sixteen respondents were interviewed using a semi-structured questionnaire. Results: All respondents had heard about rabies from different sources, with the majority hearing from informal sources (62%). Approximately 51.9%, 0.7%, and 47.4% of individuals were aware of saliva contact, rabid animal bites, and both as means of transmission, respectively. The survey showed that 64.4% of participants knew the 100% fatal nature of rabies once the clinical signs developed, and 35.6% did not. Approximately 51.4% of respondents agreed that killing stray dogs was an effective method for rabies prevention. In this study, 72.6% of the respondents had contact with pets, and 36.8% of the interviewees had vaccinated their dogs. Only the educational level (p = 0.03) was associated with knowledge of the transmission route. Age (p = 0.04) and educational level (p = 0.01) had a statistically significant association with knowledge of the risk of not vaccinating dogs. Conclusions and Relevance: A lack of formal education in the communities, low levels of education, and the majority of respondents acquiring their knowledge from unofficial sources are important contributors to the low levels of awareness.

Essential oil pharmaceuticals for killing ectoparasites on dogs

  • Phacharaporn Tadee;Sunee Chansakaow;Pramote Tipduangta;Pakpoom Tadee;Pakasinee Khaodang;Kridda Chukiatsiri
    • Journal of Veterinary Science
    • /
    • 제25권1호
    • /
    • pp.5.1-5.10
    • /
    • 2024
  • Background: External parasites, particularly ticks and fleas, are among the most common problems affecting dogs. Chemical medicines are commonly used to prevent and eliminate such external parasites, but their improper use can cause adverse reactions, and the toxins they contain may remain in the environment. Objectives: The objective of this study was to investigate the in vitro efficacy of Zanthoxylum limonella, citronella, clove, peppermint, and ginger essential oils against dog ticks and fleas and to test the sensitivity of dogs' skin to these essential oils. Methods: The five essential oils were tested for in vitro efficacy against ticks and fleas, and the two most effective essential oils were then tested on the dogs' skin. Results: The results revealed that these five essential oils at 16% concentrations effectively inhibited the spawning of female engorged ticks. In addition, all five essential oils had a strong ability to kill tick larvae at concentrations of 2% upward. Furthermore, 4% concentrations of the five essential oils quickly eliminated fleas, especially clove oil, which killed 100% of fleas within 1 h. A 50%, 90%, and 99% lethal concentration (LC50, LC90, and LC99) for the essential oils on tick larvae in 24 h were found to be low values. LC50, LC90, and LC99 for the essential oils on flea in 1 h was lowest values. Clove oil at 16% concentration was the most satisfactory essential oil for application on dogs' skin, with a low percentage of adverse effects. Conclusions: This study confirmed the effectiveness of essential oils for practical use as tick and flea repellents and eliminators. Essential-oil-based pharmaceutical can replace chemical pesticides and provide benefits for both consumers and the environment.

As a Modulator, Multitasking Roles of SIRT1 in Respiratory Diseases

  • Yunxin Zhou;Fan Zhang;Junying Ding
    • IMMUNE NETWORK
    • /
    • 제22권3호
    • /
    • pp.21.1-21.21
    • /
    • 2022
  • As far the current severe coronavirus disease 2019 (COVID-19), respiratory disease is still the biggest threat to human health. In addition, infectious respiratory diseases are particularly prominent. In addition to killing and clearing the infection pathogen directly, regulating the immune responses against the pathogens is also an important therapeutic modality. Sirtuins belong to NAD+-dependent class III histone deacetylases. Among 7 types of sirtuins, silent information regulator type-1 (SIRT1) played a multitasking role in modulating a wide range of physiological processes, including oxidative stress, inflammation, cell apoptosis, autophagy, antibacterial and antiviral functions. It showed a critical effect in regulating immune responses by deacetylation modification, especially through high-mobility group box 1 (HMGB1), a core molecule regulating the immune system. SIRT1 was associated with many respiratory diseases, including COVID-19 infection, bacterial pneumonia, tuberculosis, and so on. Here, we reviewed the latest research progress regarding the effects of SIRT1 on immune system in respiratory diseases. First, the structure and catalytic characteristics of SIRT1 were introduced. Next, the roles of SIRT1, and the mechanisms underlying the immune regulatory effect through HMGB1, as well as the specific activators/inhibitors of SIRT1, were elaborated. Finally, the multitasking roles of SIRT1 in several respiratory diseases were discussed separately. Taken together, this review implied that SIRT1 could serve as a promising specific therapeutic target for the treatment of respiratory diseases.